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TCP and network congestion
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This Lecture

• Focus
– How should senders pace themselves to 

avoid stressing the network?

• Topics
– congestion collapse
– congestion control Physical

Data Link

Network

Transport

Session

Presentation

Application



• Buffers at routers used to absorb bursts when input rate > output
• Loss (drops) occur when sending rate is persistently > drain rate

Destination
1.5-Mbps T1 link

Router
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Congestion from in the network

Packets queued here
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Congestion Collapse

• In the limit, premature retransmissions lead to congestion collapse 
– e.g., 1000x drop in effective bandwidth of network
– sending more packets into the network when it is overloaded 

exacerbates the problem (overflow router queues)
– network stays busy but very little useful work is being done

• This happened in real life ~1987
– Led to Van Jacobson’s TCP algorithms

• these form the basis of congestion control in the Internet today

• Researchers asked two questions:
– Was TCP misbehaving?
– Could TCP be “trained” to work better under ‘abysmal network 

conditions?’
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A Scenario

Receiver window size is 16KB.

Bottleneck router buffer size is 
15 KB.

Data bandwidth is about 20KB/s
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Slope is bandwidth.

Steep smooth upward 
slope == means good 
bandwidth.

Downward slope means 
retransmissions (bad).

Behavior of Basic Sliding Window
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Flow Control
Window Size

ACK Pacing

Timeout Value

RTT

Behavior of Basic Sliding Window
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Let's Fix It

• We want to avoid overflowing the bottleneck router's queue
– Idea 1: use something like flow-control, but with the router as the 

remote end point
– Idea 2: throttle the source send rate so that it's no more than the 

bottleneck router's available capacity

• We'd like to retransmit instantly when a packet is actually lost, 
and not at all if it isn't

• If we controlled what the routers did, approaches come to 
mind

• We don't (can't) control what the routers do
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Modern TCP in previous scenario
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Too fast

Just right

Too slow

Behavior of Basic Sliding Window

Too late?
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Restriction on Approaches

• Can't ask routers to do anything they don't already do

• Can't radically change TCP (sliding window basis)
– There's no way to deploy “a new TCP” to every Internet endpoint 

at once (or maybe ever)
– You can deploy incrementally

• One side of a TCP connection can do something new, if
• It doesn't break the other, unmodified side

• The bottleneck router's capacity may change from time to 
time
– (Even which router is the bottleneck may change)
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TCP's Solutions

• If we knew RTT and Current Router Queue Size,
– then we would send:

MIN(Router Capacity ­ Queue Size, Effective Window Size)

– and not retransmit a packet until it had been sent RTT ago.

• But we don’t know these things
– so we have to estimate them

• They change over time because of other data sources
– so we have to continually adapt them
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1988 Observations on Congestion 
Collapse

• Implementation, not the protocol, leads to collapse
– choices about when to retransmit, when to “back off” because of losses

• “Obvious” ways of doing things lead to non-obvious and 
undesirable results

– send effective-window-size # packets
– wait RTT
– try again

• Remedial algorithms achieve network stability by forcing the 
transport connection to obey a ‘packet conservation principle’.

– for connection in equilibrium  (stable with full window in transit), 
packet flow is conservative

• a new packet not put in network until an old packet leaves
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Ideal packet flow: stable equilibrium

Pr = Interpacket spacing   --> mirrors that of slowest link

As = Inter-ACK spacing   --> mirrors that of slowest downstream link
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Modern TCP in previous scenario

Notice:

• no retransmissions, 
(and thus no packet loss)

• achieved BW = 
bottleneck BW
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Basic rules of TCP congestion control

1. The connection must reach equilibrium.
– hurry up and stabilize
– when things get wobbly, put on the brakes and reconsider

1. Sender must not inject a new packet before an old packet has left
– a packet leaves when the receiver picks it up,
– or if it gets lost.

• damaged in transit or dropped at congested point
• (far fewer than 1% of packets get damaged in practice)

– ACK or packet timeout signals that a packet has “exited.”
– ACK are easy to detect.
– appropriate timeouts are harder…. all about estimating RTT.

3. Equilibrium is lost because of resource contention along the way.
– new competing stream appears, must re-stabilize
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Resulting TCP/IP Improvements

• Slow-start
• Round-trip time variance estimation
• Exponential retransmit timer backoff
• More aggressive receiver ACK policy
• Dynamic window sizing on congestion
• Clamped retransmit backoff (Karn)
• Fast Retransmit

Packet Conservation 
Principle

Congestion control means: “Finding places that violate the 
conservation of packets principle and then fixing them.”
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1. The connection must reach equilibrium.
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1. Getting to Equilibrium: Slow Start

• Goal
– Quickly determine the appropriate congestion window size

• Basically, we’re trying to sense the bottleneck bandwidth

• Strategy
– Introduce congestion_window (cwnd)
– When starting off, set cwnd to 1 
– For each ACK received, add 1 to cwnd
– When sending, send the minimum of receiver’s advertised 

window and cwnd
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Cwnd doubles every RTT;

Opening a window of size

W takes time (RTT)log2W.
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Slow Start

• Note that the effect is to double transmission rate every 
RTT
– This is slow?

• Basically an effective way to probe for the bottleneck 
bandwidth, using packet losses as the feedback
– No change in protocol/header was required to implement
– Guaranteed to not transmit at more than twice the max BW, 

and for no more than one RTT. 

• When do you need to do this kind of probing?
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2.  A sender must not inject a new packet before an old packet has exited.
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2. Packet Injection: Estimating RTTs

• Do not inject a new packet until an old packet has left.
– 1. ACK tells us that an old packet has left.
– 2. Timeout  expiration tells us as well.

• We must estimate RTT properly.

• Strategy 1:  pick some constant RTT.
– simple, but probably wrong. (certainly not adaptive)

• Strategy 2: Estimate based on past behavior.

Tactic 0: Mean
Tactic 1: Mean with exponential decay
Tactic 2: Tactic 1 + safety margin 

safety margin based on current estimate of error in Tactic 1
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Tactic 0: Use the Mean

• Measure the RTT of each packet
– Time from sending packet until receiving the ACK for it

• EstimatedRTT = (Sum of SampleRTT’s) / N
– Note: requires only constant storage

• Why not do this?
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Tactic 1: Original TCP (RFC793) 
retransmission timeout algorithm

• Use EWMA to estimate RTT:

EstimatedRTT = (1­g)(EstimatedRTT) + g(SampleRTT)
0 ≤ g ≤  1,  usually g = .1 or .2

• Conservatively set timeout to small multiple (2x) of the estimate

       Retransmission Timeout = 2 x EstimatedRTT

• (Expressed in manner ofTactic 2)

       Retransmission Timeout = EstimatedRTT + EstimatedRTT
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Tactic 2: Jacobson/Karels Algorithm

1. Explicitly estimate the deviation in the RTT
      DevRTT = (1-b) * DevRTT + b * |SampledRTT - EstimatedRTT|

• typically, b = .25

2.  Retransmission timeout = 1 x EstimatedRTT + k * DevRTT
– k is generally set to 4

– timeout =~ EstimatedRTT when variance is low (estimate is good)
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3. Equilibrium is lost because of resource contention along the way.



Source
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100-Mbps FDDI

Congestion from Multiple Sources

Destination
1.5-Mbps T1 link

Router

Source
1 1-Gbps Ethernet

Packets queued here

Packets Lost Here



31

In Real Life
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Four Simultaneous Streams
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TCP is “Self-Clocking”

• ACKs pace transmissions at approximately the botteneck 
rate
– So just by sending packets we can discern the “right” sending 

rate (called the packet-pair technique)

Sink
45 Mbps T3 linkRouter

Source
100 Mbps Ethernet
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Congestion Control Relies on Signals 
from the Network

• The network is not saturated:  Send even more
• The network is saturated: Send less

• ACK signals that the network is not saturated.
• A lost packet (no ACK) signals that the network is saturated
• Leads to a simple strategy:

– On each ack, increase congestion window (additive increase)
– On each lost packet, decrease congestion window (multiplicative 

decrease)
• Why increase slowly and decrease quickly?

– Respond to good news conservatively, but  bad news aggressively
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AIMD (Additive Increase/Multiplicative Decrease)

• How to adjust probe rate?

• Increase slowly while we 
believe there is bandwidth
– Additive increase per RTT
– Cwnd += 1 packet / RTT

• Decrease quickly when there 
is loss (went too far!)
– Multiplicative decrease
– Cwnd /= 2

Source Destination

…



36

With Additive 
Increase/Multiplicative Decrease
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TCP Sawtooth Pattern
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Comparing to “Slow Start”

• Q: What is the ideal value of cwnd? 
How long will AIMD take to get there?

• Use a different strategy to get close to 
ideal value

– Slow start:
• Double cwnd every RTT

– cwnd *= 2    per RTT
– i.e., cwnd += 1   per ACK

– AIMD:
• add one to cwnd per RTT

– cwnd +=1   per RTT
– i.e., cwnd += (1/cwnd)   per ACK

Source Destination

…
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Combining Slow Start and AIMD

• Slow start is used whenever the connection is not running with 
packets outstanding
– There won't be any more ACKs until we send again
– initially, and after timeouts indicating that there’s no data on the wire

• But we don’t want to overshoot our ideal cwnd on next slow start, 
so remember the last cwnd that worked with no loss

– ssthresh = cwnd after cwnd /= 2 on loss
– switch to AIMD once cwnd passes ssthresh

ssthresh
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Example (Slow Start +AIMD)
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The Long Timeout Problem

• Would like to detect a lost packet earlier than timeout
– enable retransmit sooner

• Can we infer that a packet has been lost?
– Receiver receives an “out of order packet”
– Good indicator that the one(s) before have been misplaced

• Receiver generates a duplicate ack on receipt of a 
misordered packet

• Sender interprets sequence of duplicate acks as a signal 
that the as-yet-unacked packet has not arrived
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Fast Retransmit

• TCP uses cumulative 
acks, so duplicate acks 
start arriving after a 
packet is lost.

• We can use this fact to 
infer which packet was 
lost, instead of waiting 
for a timeout.

• 3 duplicate acks are used 
in practice

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver
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Example (with Fast Retransmit)
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Fast Recovery

• After Fast Retransmit, use further duplicate acks to grow 
cwnd and clock out new packets, since these acks 
represent packets that have left the network.

• End result: Can achieve AIMD when there are single 
packet losses. Only slow start the first time and on a 
real timeout.
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Example (with Fast Recovery)
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Fairness – an informal argument
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Client B arrives.
What happens?
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Key Concepts

• Packet conservation is a fundamental concept in TCP’s 
congestion management
– Get to equilibrium

• Slow Start
– Do nothing to get out of equilibrium

• Good RTT Estimate
– Adapt when equilibrium has been lost due to other’s attempts to 

get to/stay in equilibrium
• Additive Increase/Multiplicative Decrease

• The network reveals its own behavior
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Key Concepts (next level down)

• TCP probes the network for bandwidth, assuming that 
loss signals congestion

• The congestion window is managed to be additive 
increase / multiplicative decrease
– It took fast retransmit and fast recovery to get there

• Slow start is used to avoid lengthy initial delays
– Ramp up to near target rate and then switch to AIMD


	CSE/EE 461   TCP and network congestion
	This Lecture
	Congestion from in the network
	Congestion Collapse
	A Scenario
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	If only…
	1988 Observations on Congestion Collapse
	Ideal packet flow: stable equilibrium
	Modern TCP in previous scenario
	Basic rules of TCP congestion control
	Resulting TCP/IP Improvements
	Slide 18
	1. Getting to Equilibrium -- Slow Start
	Slide 20
	Slow Start
	Slide 22
	2. Packet Injection. Estimating RTTs
	b) Setting the Retransmission Timeout
	Original TCP (RFC793) retransmission timeout algorithm
	Slide 26
	Jacobson/Karels Algorithm
	Slide 28
	Slide 29
	Congestion from Multiple Sources
	In Real Life
	Four Simultaneous Streams
	TCP is “Self-Clocking”
	Congestion Control Relies on Signals from the Network 
	AIMD (Additive Increase/Multiplicative Decrease)
	With Additive Increase/Multiplicative Decrease
	TCP Sawtooth Pattern
	Comparing to “Slow Start”
	Combining Slow Start and AIMD
	Example (Slow Start +AIMD)
	The Long Timeout Problem
	Fast Retransmit
	Example (with Fast Retransmit)
	Fast Recovery
	Example (with Fast Recovery)
	Fairness – an informal argument
	Slide 47
	Key Concepts
	Key Concepts (next level down)

