
CSE 461

TCP and network congestion

2

This Lecture

• Focus
– How should senders pace themselves to

avoid stressing the network?

• Topics
– congestion collapse
– congestion control Physical

Data Link

Network

Transport

Session

Presentation

Application

• Buffers at routers used to absorb bursts when input rate > output
• Loss (drops) occur when sending rate is persistently > drain rate

Destination
1.5-Mbps T1 link

Router

Source
2

Source
1

100-Mbps Enet

1-Gbps Ethernet

Congestion from in the network

Packets queued here

4

Congestion Collapse

• In the limit, premature retransmissions lead to congestion collapse
– e.g., 1000x drop in effective bandwidth of network
– sending more packets into the network when it is overloaded

exacerbates the problem (overflow router queues)
– network stays busy but very little useful work is being done

• This happened in real life ~1987
– Led to Van Jacobson’s TCP algorithms

• these form the basis of congestion control in the Internet today

• Researchers asked two questions:
– Was TCP misbehaving?
– Could TCP be “trained” to work better under ‘abysmal network

conditions?’

5

A Scenario

Receiver window size is 16KB.

Bottleneck router buffer size is
15 KB.

Data bandwidth is about 20KB/s

6

Slope is bandwidth.

Steep smooth upward
slope == means good
bandwidth.

Downward slope means
retransmissions (bad).

Behavior of Basic Sliding Window

7

Flow Control
Window Size

ACK Pacing

Timeout Value

RTT

Behavior of Basic Sliding Window

8

Let's Fix It

• We want to avoid overflowing the bottleneck router's queue
– Idea 1: use something like flow-control, but with the router as the

remote end point
– Idea 2: throttle the source send rate so that it's no more than the

bottleneck router's available capacity

• We'd like to retransmit instantly when a packet is actually lost,
and not at all if it isn't

• If we controlled what the routers did, approaches come to
mind

• We don't (can't) control what the routers do

9

Modern TCP in previous scenario

10

Too fast

Just right

Too slow

Behavior of Basic Sliding Window

Too late?

11

Restriction on Approaches

• Can't ask routers to do anything they don't already do

• Can't radically change TCP (sliding window basis)
– There's no way to deploy “a new TCP” to every Internet endpoint

at once (or maybe ever)
– You can deploy incrementally

• One side of a TCP connection can do something new, if
• It doesn't break the other, unmodified side

• The bottleneck router's capacity may change from time to
time
– (Even which router is the bottleneck may change)

12

TCP's Solutions

• If we knew RTT and Current Router Queue Size,
– then we would send:

MIN(Router Capacity ­ Queue Size, Effective Window Size)

– and not retransmit a packet until it had been sent RTT ago.

• But we don’t know these things
– so we have to estimate them

• They change over time because of other data sources
– so we have to continually adapt them

13

1988 Observations on Congestion
Collapse

• Implementation, not the protocol, leads to collapse
– choices about when to retransmit, when to “back off” because of losses

• “Obvious” ways of doing things lead to non-obvious and
undesirable results

– send effective-window-size # packets
– wait RTT
– try again

• Remedial algorithms achieve network stability by forcing the
transport connection to obey a ‘packet conservation principle’.

– for connection in equilibrium (stable with full window in transit),
packet flow is conservative

• a new packet not put in network until an old packet leaves

14

Ideal packet flow: stable equilibrium

Pr = Interpacket spacing --> mirrors that of slowest link

As = Inter-ACK spacing --> mirrors that of slowest downstream link

15

Modern TCP in previous scenario

Notice:

• no retransmissions,
(and thus no packet loss)

• achieved BW =
bottleneck BW

16

Basic rules of TCP congestion control

1. The connection must reach equilibrium.
– hurry up and stabilize
– when things get wobbly, put on the brakes and reconsider

1. Sender must not inject a new packet before an old packet has left
– a packet leaves when the receiver picks it up,
– or if it gets lost.

• damaged in transit or dropped at congested point
• (far fewer than 1% of packets get damaged in practice)

– ACK or packet timeout signals that a packet has “exited.”
– ACK are easy to detect.
– appropriate timeouts are harder…. all about estimating RTT.

3. Equilibrium is lost because of resource contention along the way.
– new competing stream appears, must re-stabilize

17

Resulting TCP/IP Improvements

• Slow-start
• Round-trip time variance estimation
• Exponential retransmit timer backoff
• More aggressive receiver ACK policy
• Dynamic window sizing on congestion
• Clamped retransmit backoff (Karn)
• Fast Retransmit

Packet Conservation
Principle

Congestion control means: “Finding places that violate the
conservation of packets principle and then fixing them.”

18

1. The connection must reach equilibrium.

19

1. Getting to Equilibrium: Slow Start

• Goal
– Quickly determine the appropriate congestion window size

• Basically, we’re trying to sense the bottleneck bandwidth

• Strategy
– Introduce congestion_window (cwnd)
– When starting off, set cwnd to 1
– For each ACK received, add 1 to cwnd
– When sending, send the minimum of receiver’s advertised

window and cwnd

20

Cwnd doubles every RTT;

Opening a window of size

W takes time (RTT)log2W.

21

Slow Start

• Note that the effect is to double transmission rate every
RTT
– This is slow?

• Basically an effective way to probe for the bottleneck
bandwidth, using packet losses as the feedback
– No change in protocol/header was required to implement
– Guaranteed to not transmit at more than twice the max BW,

and for no more than one RTT.

• When do you need to do this kind of probing?

22

2. A sender must not inject a new packet before an old packet has exited.

23

2. Packet Injection: Estimating RTTs

• Do not inject a new packet until an old packet has left.
– 1. ACK tells us that an old packet has left.
– 2. Timeout expiration tells us as well.

• We must estimate RTT properly.

• Strategy 1: pick some constant RTT.
– simple, but probably wrong. (certainly not adaptive)

• Strategy 2: Estimate based on past behavior.

Tactic 0: Mean
Tactic 1: Mean with exponential decay
Tactic 2: Tactic 1 + safety margin

safety margin based on current estimate of error in Tactic 1

24

Tactic 0: Use the Mean

• Measure the RTT of each packet
– Time from sending packet until receiving the ACK for it

• EstimatedRTT = (Sum of SampleRTT’s) / N
– Note: requires only constant storage

• Why not do this?

25

Tactic 1: Original TCP (RFC793)
retransmission timeout algorithm

• Use EWMA to estimate RTT:

EstimatedRTT = (1­g)(EstimatedRTT) + g(SampleRTT)
0 ≤ g ≤ 1, usually g = .1 or .2

• Conservatively set timeout to small multiple (2x) of the estimate

 Retransmission Timeout = 2 x EstimatedRTT

• (Expressed in manner ofTactic 2)

 Retransmission Timeout = EstimatedRTT + EstimatedRTT

26

27

Tactic 2: Jacobson/Karels Algorithm

1. Explicitly estimate the deviation in the RTT
 DevRTT = (1-b) * DevRTT + b * |SampledRTT - EstimatedRTT|

• typically, b = .25

2. Retransmission timeout = 1 x EstimatedRTT + k * DevRTT
– k is generally set to 4

– timeout =~ EstimatedRTT when variance is low (estimate is good)

28

29

3. Equilibrium is lost because of resource contention along the way.

Source
2

100-Mbps FDDI

Congestion from Multiple Sources

Destination
1.5-Mbps T1 link

Router

Source
1 1-Gbps Ethernet

Packets queued here

Packets Lost Here

31

In Real Life

32

Four Simultaneous Streams

33

TCP is “Self-Clocking”

• ACKs pace transmissions at approximately the botteneck
rate
– So just by sending packets we can discern the “right” sending

rate (called the packet-pair technique)

Sink
45 Mbps T3 linkRouter

Source
100 Mbps Ethernet

34

Congestion Control Relies on Signals
from the Network

• The network is not saturated: Send even more
• The network is saturated: Send less

• ACK signals that the network is not saturated.
• A lost packet (no ACK) signals that the network is saturated
• Leads to a simple strategy:

– On each ack, increase congestion window (additive increase)
– On each lost packet, decrease congestion window (multiplicative

decrease)
• Why increase slowly and decrease quickly?

– Respond to good news conservatively, but bad news aggressively

35

AIMD (Additive Increase/Multiplicative Decrease)

• How to adjust probe rate?

• Increase slowly while we
believe there is bandwidth
– Additive increase per RTT
– Cwnd += 1 packet / RTT

• Decrease quickly when there
is loss (went too far!)
– Multiplicative decrease
– Cwnd /= 2

Source Destination

…

36

With Additive
Increase/Multiplicative Decrease

37

TCP Sawtooth Pattern

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

C
w

nd
 (

K
B

)

T ime (seconds)

70

30
40
50

10

10.0

38

Comparing to “Slow Start”

• Q: What is the ideal value of cwnd?
How long will AIMD take to get there?

• Use a different strategy to get close to
ideal value

– Slow start:
• Double cwnd every RTT

– cwnd *= 2 per RTT
– i.e., cwnd += 1 per ACK

– AIMD:
• add one to cwnd per RTT

– cwnd +=1 per RTT
– i.e., cwnd += (1/cwnd) per ACK

Source Destination

…

39

Combining Slow Start and AIMD

• Slow start is used whenever the connection is not running with
packets outstanding
– There won't be any more ACKs until we send again
– initially, and after timeouts indicating that there’s no data on the wire

• But we don’t want to overshoot our ideal cwnd on next slow start,
so remember the last cwnd that worked with no loss

– ssthresh = cwnd after cwnd /= 2 on loss
– switch to AIMD once cwnd passes ssthresh

ssthresh

40

Example (Slow Start +AIMD)

Time (seconds)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

70

30
40
50

10

Timeout Timeout Timeout

Packets that will be lostSlowstart
AIMD

41

The Long Timeout Problem

• Would like to detect a lost packet earlier than timeout
– enable retransmit sooner

• Can we infer that a packet has been lost?
– Receiver receives an “out of order packet”
– Good indicator that the one(s) before have been misplaced

• Receiver generates a duplicate ack on receipt of a
misordered packet

• Sender interprets sequence of duplicate acks as a signal
that the as-yet-unacked packet has not arrived

42

Fast Retransmit

• TCP uses cumulative
acks, so duplicate acks
start arriving after a
packet is lost.

• We can use this fact to
infer which packet was
lost, instead of waiting
for a timeout.

• 3 duplicate acks are used
in practice

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Retransmit
packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiver

43

Example (with Fast Retransmit)

Time (seconds)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

70

30
40
50

10

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

K
B

70

30
40
50

10

Timeout Timeout Timeout

FT

NO FT

44

Fast Recovery

• After Fast Retransmit, use further duplicate acks to grow
cwnd and clock out new packets, since these acks
represent packets that have left the network.

• End result: Can achieve AIMD when there are single
packet losses. Only slow start the first time and on a
real timeout.

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

K
B

70

30
40
50

10

45

Example (with Fast Recovery)

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

C
w

nd
 (

K
B

)

T ime (seconds)

70

30
40
50

10

10.0

(Not the same trace as before)

The Familiar Saw Tooth Pattern

46

Fairness – an informal argument

Client A Bandwidth

C
l
i
e
n
t

B

B
a
n
d
w
i
d
t
h

Bottleneck bandwidth Client A has an ongoing flow.
Client B arrives.
What happens?

47

Fairness – an informal argument

Client A Bandwidth

C
l
i
e
n
t

B

B
a
n
d
w
i
d
t
h

Bottleneck bandwidth Client A has an ongoing flow.
Client B arrives.
What happens?

48

Key Concepts

• Packet conservation is a fundamental concept in TCP’s
congestion management
– Get to equilibrium

• Slow Start
– Do nothing to get out of equilibrium

• Good RTT Estimate
– Adapt when equilibrium has been lost due to other’s attempts to

get to/stay in equilibrium
• Additive Increase/Multiplicative Decrease

• The network reveals its own behavior

49

Key Concepts (next level down)

• TCP probes the network for bandwidth, assuming that
loss signals congestion

• The congestion window is managed to be additive
increase / multiplicative decrease
– It took fast retransmit and fast recovery to get there

• Slow start is used to avoid lengthy initial delays
– Ramp up to near target rate and then switch to AIMD

	CSE/EE 461 TCP and network congestion
	This Lecture
	Congestion from in the network
	Congestion Collapse
	A Scenario
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	If only…
	1988 Observations on Congestion Collapse
	Ideal packet flow: stable equilibrium
	Modern TCP in previous scenario
	Basic rules of TCP congestion control
	Resulting TCP/IP Improvements
	Slide 18
	1. Getting to Equilibrium -- Slow Start
	Slide 20
	Slow Start
	Slide 22
	2. Packet Injection. Estimating RTTs
	b) Setting the Retransmission Timeout
	Original TCP (RFC793) retransmission timeout algorithm
	Slide 26
	Jacobson/Karels Algorithm
	Slide 28
	Slide 29
	Congestion from Multiple Sources
	In Real Life
	Four Simultaneous Streams
	TCP is “Self-Clocking”
	Congestion Control Relies on Signals from the Network
	AIMD (Additive Increase/Multiplicative Decrease)
	With Additive Increase/Multiplicative Decrease
	TCP Sawtooth Pattern
	Comparing to “Slow Start”
	Combining Slow Start and AIMD
	Example (Slow Start +AIMD)
	The Long Timeout Problem
	Fast Retransmit
	Example (with Fast Retransmit)
	Fast Recovery
	Example (with Fast Recovery)
	Fairness – an informal argument
	Slide 47
	Key Concepts
	Key Concepts (next level down)

