CSE/EE 461: Introduction to Computer Communications Networks Winter 2010

Module 7 Routing Overview

John Zahorjan zahorjan@cs.washington.edu 534 Allen Center

This Module

- Review of forwarding
- Overview of approaches
 - Distance Vector Routing
 - Link State Routing

Application

Presentation

Session

Transport

Network

Data Link

Physical

Forwarding

Routing: Link Costs

Routing: Full Duplex Links

Routing as a Shortest Path Problem

- Routing table entries: [destination network, next hop router]
- To decide which router is on the next hop, want to find the shortest path from the router to the destination network's router
- We'll first look at sequential solutions, then distributed
 - "Sequential": full network topology information is available
 - "Distributed": must distribute information and perform computation on each router
- We'll first look at the single-destination / all-sources problem, then all-destinations / all-sources
- One thing to look for:
 - each router obtains a consistent view
 - forwards on shortest path
 - shortest paths don't have loops!

First Approach: Greedy

Dijkstra's Algorithm

- Greedy:
 - Build the spanning tree by adding routers to the current spanning tree one at a time
 - Choose next the as-yet-unadded router whose distance to the destination is minimal
 - Starting conditions:
 - [0,-] at destination
 - $[\infty, -]$ at every other router
 - Spanning tree is the destination router alone
- Running time: O(E logV)

2/17/2010

Dijkstra Example

How do we know this works?

After One Step

How do we know this works?

After Two Steps

How do we know this works?

After Three Steps

How do we know this works?

After Four Steps

How do we know this works?

After Five Steps

How do we know this works?

After Six Steps

How do we know this works?

After Seven Steps

How do we know this works?

After Eight Steps

How do we know this works?

After Nine Steps

How do we know this works?

Second Approach: Iterative

Bellman-Ford Algorithm

- Iterative:
 - At each step, update [cost, next hop] for every router based on [cost] at neighbors
 - Starting conditions:
 - [0,-] at destination
 - $[\infty, -]$ at every other router
- Running time: O(VE)
 - V: number of vertices (routers)
 - E: number of edges (links)

2/17/2010

Bellman-Ford Example

How long can it take to converge?

After One Iteration

How long can it take to converge?

After Two Iterations

How long can it take to converge?

After Three Iterations

How long can it take to converge?

After Four Iterations

How long can it take to converge?

After Five Iterations

How long can it take to converge?

Result

Note: The result is a spanning tree rooted at the destination

Moving to the Internet

- Routing table reflects spanning tree from source to every destination
 - Not really a big change
 - Bellman-Ford: every destination is engaged in the procedure
 - Dykstra: make the source the root, rather than the destination
- Have to distribute information
 - Bellman-Ford: neighbor information about current costs to each destination
 - Dijkstra: full topology/cost information
- The process is on-going
 - Not all routers boot at once
- Router/link failures can occur
 - Link cost data isn't static