
CSE 461: Introduction to Computer

Communications Networks

Winter 2009

Module 1.5

Introduction – Reliable Multicast

John Zahorjan
zahorjan@cs.washington.edu

534 Allen Center

Context

• We can all name examples of distributed applications

• It turns out that what's going on inside networks are
distributed applications as well

• Understanding distributed applications requires
thinking in new ways

• Here's an example that exposes that (and that
considers a key issue in any distributed app: ordering)

01/06/10 CSE 461 09wi 3

The Example Application

• Suppose you want to build chat room software

• You want all messages typed by all participants to show up on
everyone’s screen in the same order

• Division of responsibilities:
– Chat room application software: most everything, except for…
– Multicast

• a single send(m) call causes message m to be delivered to multiple
destinations

01/06/10 CSE 461 09wi 4

The Chat Room Application

m-send(m)

ch
at

ap
p

M
ul

ti
ca

st

deliver(m)

chat
app

M
cast

deliver(m)

chat
app

M
cast

“Network
Hardware”
“Network
Hardware”

“The Network” (as seen by the chat app)

forever {

 when user input {

 m-send(m);

 }

}
forever {

 when deliver(m) {

 print m;
 }

}

01/06/10 CSE 461 09wi 5

Reliable, Totally Ordered Multicast

• multicast: a single send(m) call causes message m to be
delivered to multiple destinations

• totally ordered: roughly, there is a unique sorted order to the
messages (less roughly, the ordering is determined by an
antisymmetric, transitive, and total relation)

• reliable: if a correctly operating client displays message m
before displaying message m’, then any other correctly
operating client that displays m’ will first display m

01/06/10 CSE 461 09wi 6

RTOM

• We actually want more than this, in a practical setting
– Liveness: all messages are eventually displayed
– “Reasonableness”: in normal operation, each message should

be displayed promptly at all clients

• Some unreasonable (and possibly not-live) solutions:
– Never show any messages
– Choose a single client and show only its messages
– We cycle in a fixed order among the clients

• Show msg from A, then B, then ...Z, then A,....

– Wait until all clients quit the chat, then sort the messages
lexicographically and print them.

01/06/10 CSE 461 09wi 7

We're Going to Solve This Twice

• Method A:
– Implement something
– run to find bugs
– change to fix bugs
– repeat

• Method B:
– Let's consider the problem carefully
– Then let's implement

01/06/10 CSE 461 09wi 8

First Try: The Straightforward Implementation

• When m-send(m) is invoked, immediately send it to
each client (including yourself):

• When a message m is received from the network,
hand it up to the app (to display):

• What can (will) go wrong?

• Observation: receiver side timestamps are useless in
solving this problem

foreach client c {
 net-send(c,m);
}

deliver(m);

01/06/10 CSE 461 09wi 9

Second Try: Sender timestamps
• Assume net-send() is reliable, and that no client crashes or has bugs

• On m-send(m) :

• When a message (m,t) is received from client s:

• Does it work?

t = localClockTime();
foreach client c {
 net-send(c,m,t);
}

put (m,t) in a sorted queue;

while (there is a message in the queue) {

 deliver(the message with the lowest timestamp);
 remove the delivered message from the queue;
}

01/06/10 CSE 461 09wi 10

Third Try
• Assume net-send() is reliable, and that no client crashes or has bugs

• On m-send(m) :

• When a message (m,t) is received from client s:

• Does it work?
– Are you sure?
– What assumption about what net-send() guarantees are required?
– What other assumption is it making?
– Why isn’t it an acceptable solution in practice?

t = localClockTime();
foreach client c {
 net-send(c,m,t);
}

put (m,t) in a sorted queue;

while (there is a message in the queue from each client) {

 deliver(the message with the lowest timestamp);
 remove the delivered message from the queue;
}

01/06/10 CSE 461 09wi 11

2nd Try: Develop a Solution Carefully

m-send(m)

ch
at

ap
p

M
ul

ti
ca

st

deliver(m)

chat
app

M
cast

deliver(m)

chat
app

M
cast

“Network
Hardware”
“Network
Hardware”

“The Network” (as seen by the chat app)

forever {

 when user input {

 m-send(m);

 }

}
forever {

 when deliver(m) {

 print m;
 }

}

01/06/10 CSE 461 09wi 12

Implementing RTOM

• RTOM has its own view of what the network is
– The interface provided by lower layer networking software

and/or hardware

• Assumed properties of that interface (RPO):
– Reliability Assumption: Reliable

• If A does a net-send(m,B), B will eventually receive m
– Note: The delivery delay is finite but unpredictable

– Ordering Assumption: Pair-wise ordered
• If A does net-send(m,B) and later net-send(m’,B), m will be

deliver()’ed to B before m’
– Note: this property holds only “pairwise.” If A does net-send(m,B)

then net-send(m’,C), there is no guarantee about the order of
delivery of m and m’

01/06/10 CSE 461 09wi 13

The Layer Below RTOM

m-send(m)

ch
at

ap
p

RP
O

net-send()

RT
O

M

deliver(m)receive()

chat
app

RPO

RTO
M

deliver(m)receive()

chat
app

RPO

RTO
M

“Network
Hardware”
“Network
Hardware”

“The Network” (as seen by RTOM)

01/06/10 CSE 461 09wi 14

Why Is This Not Trivial?

• Unpredictable delays in the network is enough

t0 : N0 sends; N1,N2 receive

t1 : N1 sends; all receive

t2: N3 receives N0’s message

N
0

N
1

N
3

N
2t0

t1

t2

01/06/10 CSE 461 09wi 15

Essence of the Solution

• The problem is distributed
• Each node is going to make a decision, based

entirely on information it has itself
• It knows what it sent and what is has received
• It doesn't know (with complete accuracy) what any other node

has sent or received

• The key property we need is that all nodes make
consistent decisions

• To do that, we want them to:
– Apply a deterministic function to...
– Data that is enough alike that they get the same answer

01/06/10 CSE 461 09wi 16

The Function: Min({timestamps})

• If all nodes had the same set S of timestamps, and all
made a decision, they'd make the same decision
– That's good

• There's no way to know what set other nodes have
– That's bad

• In fact, the set of timestamps at node A may not be a
subset of the set at B, nor vice-versa

01/06/10 CSE 461 09wi 17

One Important Aspect of the Solution

• Exploit (assumed) pairwise-ordered property of
underlying network

…
Min Chat Application

01/06/10 CSE 461 09wi 18

What if someone doesn't send for while?

• If any of the incoming queues is empty, we can't
deliver anything

• If there are messages in some queues, we'd like to be
sure there will “soon” be messages in all

• One way:
– If a client hasn't sent a message in the least T milliseconds, it

must send a “I have no message” message
– Problem with that?

• Another way:
– Make sure that for each actual message sent by any client c,

every other client sends a message shortly thereafter
• We're goint to call these acknowledgments, but they're have an additional

purpose beyond the ACKs we'll see throughout t he course after this

01/06/10 CSE 461 09wi 19

Acknowledgments

N
0

N
1

N
3

N
2

Blue: data mcast
Red: ACK mcast

01/06/10 CSE 461 09wi 20

One Remaining Problem...

N
0

N
1

N
3

N
2

9:28:32 PM

9:28:32 PM

9:28:32 PM

3:17:31 AM

What happens?

01/06/10 CSE 461 09wi 21

Lamport clocks

• Each client has its own Lamport clock, with
monotonically increasing timestamp tc

• Every event is tagged with its timestamp
– For us, events are m-send() invocations and message

receptions

• When a local event occurs on node c (m-send(m) is
invoked):
– tc = tc + 1

• When a message with timestamp ts is received at c:
– tc = max(tc, ts) + 1

01/06/10 CSE 461 09wi 22

Finally, the Implementation

• On m-send(m) at client s:

• When (m,ts) is received at c:

ts = ts + 1;
foreach client c {
 net-send(c,m,ts);
}

tc = max(tc, ts) + 1;

// broadcast an acknowledgement of m to everyone else
if (the message received is not itself an ACK) {
 foreach client q {
 net-send(q,ACK(m),tc);
 }
}

put (m,ts) in a sorted queue;
while (the first non-ACK message in the queue has been ACK’ed by all clients) {
 deliver(that first non-ACK message);
 remove that message and its ACKs from the queue;
}

01/06/10 CSE 461 09wi 23

An Example

N
0

N
1

N
3

N
2t0

t1

t2

N3 ACKs

N3 receives

N1 sends

N2 ACKs

(*,2,*,3)(1,2,3,*)(1,2,*,*)(3,2,*,*)N1 ACKs

(*,*,*,0)(1,*,2,*)(1,2,*,*)(1,*,*,*)N0 sends

(*,*,*,0)(*,*,0,*)(*,0,*,*)(0,*,*,*)Startup

N3N2N1N0Event

Vectors show what each node knows about the local
time at all of the nodes. The algorithm doesn't explicitly
keep these vectors – the times for other nodes are in the
messages in the queue.

Except for the first send from N0, we’re assuming all other
messages are received by all nodes, and that no two messages
are ever in the network at the same time. (That last bit just
for simplicity in constructing this example.)

01/06/10 CSE 461 09wi 24

An Example

N
0

N
1

N
3

N
2t0

t1

t2

(1,5,3,7)(1,5,8,7)(1,8,3,7)(8,5,3,7)N3 ACKs

(1,5,3,7)(1,5,6,*)(1,5,3,*)(6,5,3,*)N3 receives

(*,5,3,6)(1,5,6,*)(1,5,3,*)(6,5,3,*)N1 sends

(*,2,3,4)(1,2,3,*)(1,4,3,*)(4,2,3,*)N2 ACKs

(*,2,*,3)(1,2,3,*)(1,2,*,*)(3,2,*,*)N1 ACKs

(*,*,*,0)(1,*,2,*)(1,2,*,*)(1,*,*,*)N0 sends

(*,*,*,0)(*,*,0,*)(*,0,*,*)(0,*,*,*)Startup

N3N2N1N0Event

Vectors show what each node knows about the local
time at all of the nodes. The algorithm does explicitly
keep these vectors – the times for other nodes are in the
messages in the queue.

Except for the first send from N0, we’re assuming all other
messages are received by all nodes, and that no two messages
are ever in the network at the same time. (That last bit just
for simplicity in constructing this example.)

01/06/10 CSE 461 09wi 25

Two Last Things

• Is RPO realistic?
– Does the Internet provide RPO guarantees?
– Does a local Ethernet? A local 802.11 wireless?

• RTOM: What about this solution

Server

Client 0 ClientN

	CSE/EE 461: Introduction to Computer Communications Networks Autumn 2007 Module 1.5 Introduction – Reliable Multicast
	Slide 2
	Slide 3
	Slide 4
	Reliable, Totally Ordered Multicast
	Slide 6
	Slide 7
	First Try: The Straightforward Implementation
	Second Try
	Slide 10
	The Chat Room Application
	Slide 12
	Slide 13
	Why Is This Not Trivial?
	Implementing RTOM
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Basic Idea of Solution
	Lamport clocks
	Finally, the Implementation
	An Example
	Slide 24
	Slide 25

