
CSE 461: Introduction to Computer

Communications Networks

Winter 2010

Module 1

Course Introduction

John Zahorjan
zahorjan@cs.washington.edu

534 Allen Center

A Network in 461

• A network is what you get anytime you connect two or
more computers together by some kind of a link.

OR

Focus of this Course

• You will understand how to design
and build large, distributed
computer networks.
– Fundamental problems
– Design principles
– Implementation technologies

• This is a systems course, not
queuing theory, signals, or
hardware design.

• We focus on networks, and a bit
on applications or services that
run on top of them.

Distrib. systems

Signal
s

You Are
Here

Applications
& services

Networks

Communications

01/05/10 CSE 461 10wi 4

Today’s agenda

• Course Administration
– Everything you need to know will be on the course web

page:

 http://www.cs.washington.edu/461/

– Most everything (lecture schedule, reading, assignments,
section materials, …) is linked off the schedule

• Introduction to Course Content
– Part 1: Generally useful principles and abstractions
– Part 2: An overview of the Internet

01/05/10 CSE 461 10wi 5

• Our primary goal is to understand how today’s
networks are built

• This involves a mixture of:
– science: Is there an algorithm that meets some goal?
– engineering: How cost effective are various alternatives

likely to be?
– experience: what has worked, what hasn’t, and why?
– measurement: are current networks working as intended?

how are people using them?

Course goals

01/05/10 CSE 461 10wi 6

• What is likely to be of lasting value to you?
– Specific information: Many (most? all?) real applications

involve networks.
– General lessons: engineering a large, dynamic system

• The hope, as always, is to make all minutes you
spend on the course worth your while

• Activities:
– reading text, answering questions from text, taking exams
– reading additional important papers, writing short analyses

of them
– Implementations…

Course goals (cont.)

01/05/10 CSE 461 10wi 7

– the text
• Peterson & Davie, Computer networks: a systems approach (4th

edition)

– other resources
• many online; some of them will be required reading

– Policies
• email
• late policy
• grading

Last bit of course admin

Introduction: The Internet at large

• Internetworks = network of networks
• Hierarchical structure

• millions of connected computing
devices: hosts, end-systems
– pc’s workstations, servers
– PDA’s phones, toasters

running network apps
• communication links

– fiber, copper, radio, satellite
• routers: forward packets (chunks) of

data thru network

local ISP

company
network

regional ISP

router workstation
server

mobile

01/05/10 CSE 461 10wi 9

Introduction to Networking

• Understanding networking involves thinking in a way you’re almost
certainly not accustomed to

– networks are distributed:
• concurrent: there is more than one program/computer involved
• possibly strange failure semantics

– sure, part of the “application” can crash and others stay up, but…
– part can operate incorrectly, or
– part can go down and come back up while app is running…

– network architectures are deeply layered:
• not just 2 levels (process/kernel)
• actual implementations favor function and efficiency over blind respect for

layering

– networks can have immense scale and heterogeneity
• our most prominent network, the Internet, is so large and dynamic, and operated

by so many distinct, entities that no one knows just exactly what it looks like, how
it’s being used, or how well it’s working

– networks must work correctly
• is “five nine’s” (99.999%) correctness enough?
• Estimate: by 2015, one zettabyte/year traffic (one million million billion bytes)

01/05/10 CSE 461 10wi 10

Example Networking Problem

• Suppose you’ve amassed a 1TB (1024 GB) collection
of “home movies” and you want to communicate a
copy of them to a friend living in Walla Walla

• Q: What networking technology should you use?

– A: A 1.5TB disk and the US Postal System

• This is not a joke…

01/05/10 CSE 461 10wi 11

$260$2,600522 days24 hrs19 hrs1,4001,0007DiskBrick

$3,100$31,000185 days24 hrs92 hrs10002x15,00025Tape

$2,000$20,000286 days24 hrs60 hrs4002x8000200DVD

$208$2,080286 days24 hrs60 hrs2402x8001500CD

$/TB
shipped

Cost
(10 TB)Mbps

TotalTime
/TB

ship
time

TB read +
write timeMedia$Robot$Media

Table 3: The relative cost of sneaker-net, using various media. The analysis assumes 6MBps tape, 10MBps CD/DVD and robots at each
end to handle the media. Note that the price of media is less than the fixed robot cost.

TeraScale SneakerNet: Using Inexpensive Disks for Backup, Archiving, and Data Exchange.

Jim Gray, Wyman Chong, Tom Barclay, Alex Szalay, Jan Vandenberg

May 2002, Technical Report, MS-TR-02-54

Context
Speed
Mbps

Rent
$/month

Raw
$/Mbps

Raw
$/TB
sent

Time/TB
days

home phone 0.04 40 1,000 3,086 6 years
home DSL 0.6 70 117 360 5 months
T1 1.5 1,200 800 2,469 2 months
T3 43 28,000 651 2,010 2 days
OC3 155 49,000 316 976 14 hours
100 Mpbs 100 1 day
Gbps 1000 2.2 hours
OC192 9600 1,920,000 200 617 14 minutes

Table 2: The raw price of bandwidth, the true price is more than twice this when staff, router, and support costs are included. Raw
prices are higher in some parts of the world.

01/05/10 CSE 461 10wi 12

“Storage Brick”

Huh? Why not just send the disks?

“We began sending raw disks to one another, but that
has the nasty problem that disks do not plug right into
the network. So the recipient had to have exactly the
right kind of disk reader (an ATA path that could read
an NTFS file system with an SQL database). At a
minimum, this excludes our Macintosh, Solaris, MVS,
and Linux colleagues. Even within the select group that
can read our favored disk format, we had many
problems about master-slave settings on the ATA bus,
about recognizing dynamic disks, and innumerable other
details. So, sending magnetic disks around is
problematic.”

01/05/10 CSE 461 10wi 13

The USPS as a Network
• There is a client at each end of the connection
• USPS itself is a networking service
• The service exports an API that tells clients how to

use it:
– To send:

• wrap your data in an envelope
• put an address on the envelope in a format that we (USPS)

dictate
• enter your packet into our system

– To receive:
• check your mailbox every so often
• remove the envelope from whatever you find
• voila, the data that was sent to you

01/05/10 CSE 461 10wi 14

How does the USPS network work?
• To be honest, I have almost no idea.
• Fortunately, for our purposes it doesn’t matter – it’s enough that our hypothetical explanation is

plausible and could work

1. All mail deposited into a mail box, no matter what its final destination, is first
encapsulated in a new container (a mail truck) and routed to a local sorting facility.

2. The mail is unencapsulated (taken out of the truck). The destination address is
examined, and it is re-encapsulated in a new container (e.g., mail headed to zip
codes 993** is placed in a bag)

3. The bag of mail is un- and then re-encapsulated a number of times as it is
transported over different physical media – a truck to Boeing Field, then an airplane
to SFO, a truck to a sorting facility there, a truck back to SFO, a plane to Walla
Walla, a truck to sorting facility there, a jeep/mailbag on the delivery route. At each
stop, a decision is made about where to send it next.

4. As it nears its final destination, routing is based on its actual street address. It’s
eventually stuffed into the mailbox for your friend’s address.

5. Your friend’s roommates don’t open it because part of the address includes his
name. (Note that his name portion of the address was irrelevant up to this point.)

This is a lot like (but not exactly like) what happens in the Internet

01/05/10 CSE 461 10wi 15

Parallels to the Internet
• Division of responsibilities/capabilities intersecting at an API

– At the highest level, you don’t much care how USPS delivers your mail, all
you care about is the API. (We’ll look at what the API is in just a moment.)

– Similarly, USPS doesn’t care or know what your data is.
– Moreover, you don’t really have much control over how USPS delivers your

mail.

• Delivery involves a number of hops, with routing decisions made at
each.

• A number of different physical media (trucks, planes, feet) are used,
with the lowest capacity media typically found near the sender and the
destination and the fastest media in the middle (of the route).

• Addresses are places, not people
– “1600 Pennsylvania Avenue NW, Washington, DC 20500”

 not
“Barack Obama”

– Why? Why do we care?

01/05/10 CSE 461 10wi 16

Parallels to the Internet (cont.)

• There is a loose hierarchy involved in choosing a delivery route – more
precise location information is needed as the mail gets closer to its
destination.

• Correspondingly, the useful part of the address changes at various
stages of delivery, for example:

– None of it is relevant in the first step (truck to local sorting facility)
– The first three digits of the zip are relevant through a lot of the middle

stages
– The full street address is important in the second last stage
– “Joe Smith” is relevant (only) once it has been delivered to the destination

mailbox

• There is a maximum allowed size – if you want to send more than that,
put whatever it is in multiple boxes, each not too big

• If it’s Christmas, expect more problems than usual
– The system capacity is set to give good performance most of the time, but

can suffer during periods of unusual load

01/05/10 CSE 461 10wi 17

Parallels to the Internet (cont.)

• USPS is able to make use of new delivery technologies as they
arise, without altering its API

Missle Mail

Throughout its history, the Postal Service enthusiastically has explored
faster, more efficient forms of mail transportation. Technologies now
commonplace -- railroads, automobiles, and airplanes -- were embraced by
the Post Office Department at their radical birth, when they were considered
new-fangled, unworkable contraptions by many. One such technology,
however, remains only a footnote in the history of mail delivery. On June 8,
1959, in a move a postal official heralded as "of historic significance to the
peoples of the entire world," the Navy submarine U.S.S. Barbero fired a
guided missile carrying 3,000 letters at the Naval Auxiliary Air Station in
Mayport, Florida. "Before man reaches the moon," the official was quoted as
saying, "mail will be delivered within hours from New York to California, to
Britain, to India or Australia by guided missiles."

History proved differently, but this experiment with missile mail exemplifies
the pioneering spirit of the Post Office Department when it came to
developing faster, better ways of moving the mail.

Missile Mail Launch, 1959

copied without permission from http://www.usps.com/history/his2_75.htm

01/05/10 CSE 461 10wi 18

One Last Parallel

• 1963: USPS rolls out zip codes
– 5 digits => 100,000 different zips, that’s plenty

• 1983: USPS rolls out zip+4
– 9 digits => 1,000,000,000 different zips; this time we mean it

• early 1970’s: IP developed
– 32-bit address fields => 4 billion distinct addresses, that’s plenty

• circa 1995: IPv6 standarized
– 128-bit address fields => about 1038 distinct addresses (about 1024

per square meter of the earth)
• (circa 2009: IPv6 still not widely adopted)

01/05/10 CSE 461 10wi 19

The USPS API
• We know how to send/receive mail. But what are the semantics of

those operations (i.e., what properties are guaranteed)?
– Reliability?

• Is everything sent eventually delivered?
• Is it received? (What's the difference?)
• Is it received by the person named in the address?

– Failure notification?
• Does USPS let me know if it got there or not?

– Integrity?
• If it arrives, are the contents undamaged? (Does it arrive only once?)

– Latency (delay)
• Is there a guaranteed upper bound? How much does it vary from one letter to

the next?
– Ordering?

• If I send a letter a day to a single destination address, do they arrive in the order I
sent them?

– Security?
• Is anyone reading your mail in transit?
• Can you be sure who sent the mail?
• Can you avoid having so much junk mail sent to you that there’s no room for the

mail you want?

01/05/10 CSE 461 10wi 20

USPS as Engineering

• Want the service to be widely useful
– Has to accommodate lots of different client “decisions”

• Most anything as an envelope (not a USPS designed one)
• Any old handwriting (not printed in some specific font)
• Contents of envelope are irrelevant to its delivery

– Has to be “scalable” – able to deliver mail from any and to any of an
ever increasing number of addresses

– Has to be cheap enough that people will use it
• So, has to be cheap to provide

• To be cheap, the API provides almost no guarantees
– It’ll probably get there, it’ll probably take around a week, and it’ll

probably not be damaged
– We can’t tell you who sent it or how it got there or if the check is

actually in the mail
– We can’t guarantee the carrier won’t read your postcard

01/05/10 CSE 461 10wi 21

USPS Engineering Decisions
• This may sound as though the design is “the cheapest thing to

implement possible.” It’s not.
– “Once a day, everyone take mail you find in your mailbox that’s not for you

and put it in the next mailbox to the right…”

• Hopefully, it’s an appropriate tradeoff:
– to be any cheaper, some property would have to get a lot worse (e.g.,

delivery times in months, not days)
– to provide any stronger properties (e.g., we can verify who the sender was)

it would have to get a lot more expensive
– the properties it does provide are good enough in practice for lots of uses

• A desirable feature: if in some cases it’s worth it to the sender to have
stronger properties, those properties can be built on top of the generic
service at additional expense

– If you want to know when the mail you sent arrives, phone the person you
sent it to daily

– if you don’t want the postman reading your postcards, put them in
envelopes

01/05/10 CSE 461 10wi 22

Moral of This Example

• What the Internet is doing isn’t really all that
complicated

• The fact that it isn’t all that complicated is a stunning
engineering accomplishment
– Not that it could be built, but that they decided to build it this

way

• If the pieces of the Internet architecture get a bit
confusing, think about USPS – it’s a pretty good
analogy

01/05/10 CSE 461 10wi 23

Part II: Overview of Computer Networking

1. Scalability / Implications of scale

2. The API

3. Internet overview

4. Layering / The OSI Model

01/05/10 CSE 461 10wi 24

Part 1: Network Scalability

• For this course, a “network” is what connects two
or more computers. (What’s a “computer”?)

• We are interested in network architectures that
are “scalable” – continue to work efficiently even
as the size of the system grows by orders of
magnitude

01/05/10 CSE 461 10wi 25

Why is scalability important?

• The basic network design happened in the 1970’s.

• There were maybe 10,000’s of computers in the world at the time

• Not only could the design scale, it provided a combination of cost and benefit that drove
demand

01/05/10 CSE 461 10wi 26

Implication of Scale I: Sharing

• It’s clearly infeasible to interconnect an ever growing number of
machines by running a wire/fiber/radio wave between every pair

• Links carry information (bits)
– Wire, wireless, fiber optic, smoke signals …
– May be point-to-point or broadcast

• Switches move bits between links
– Routers, gateways,bridges, CATV headend,

PABXs, …

• Hosts are the communication endpoints
– PC, PDA, cell phone, tank, toaster, …
– Hosts have names

• Much other terminology: channels, nodes,
intermediate systems, end systems, ...

01/05/10 CSE 461 10wi 27

Implication of Scale II: Intrinsic Unreliability

• Information sent from one place to another
– May not arrive
– May arrive more than once
– May arrive in garbled fashion
– May arrive out of order
– May be read by others
– May be modified by others

• Why build intrinsically unreliable networks?

01/05/10 CSE 461 10wi 28

Implication of Scale III: Distributed

• (Hopefully) independent failure modes
• Exposed and hidden dependencies

“A distributed system is a system in which I can’t do
my work because some computer has failed that I’ve never even
heard of.” – Lamport

01/05/10 CSE 461 10wi 29

Impl. Of Scale IV: Heterogeneous HW/SW

• Heterogeneous: Made up of different kinds of stuff
– vs Homogeneous: Made up of the same kind of stuff

• Principles
– Homogeneous networks are easier to deal with
– Heterogeneous networks promote innovation and scale
– Consider telephone network vs. Internet
– Reasons?

01/05/10 CSE 461 10wi

Implications of Scale V: Autonomous Authorities

• The Internet is basically an interconnection of
networks owned and operated by different
people/corporations

– I own/operate the network in my house
– My ISP owns the network my network directly connects to
– My ISP is connected to the network owned by the UW
– The UW’s network is connected to the network owned by

CSE

01/05/10 CSE 461 10wi

(About 10,000 AS’s)

01/05/10 CSE 461 10wi

Implications of Confederation/Autonomy

• HW/SW heterogeneity (which was inevitable due to
scale anyway)

• “Okay everybody, start using 64-bit addresses NOW.”

• Policy/goals heterogeneity
– So what?

01/05/10 CSE 461 10wi

Summer 2006: Internet Neutrality

01/05/10 CSE 461 10wi

2007: Cell Service Neutrality

01/05/10 CSE 461 10wi

Part II: The API

• Just as we want the network service software to run
on top of many kinds of hardware, we’d like many
kinds of applications to run on top of the network
service

• The API is most commonly exposed through a socket
interface

• A socket is a communication endpoint

01/05/10 CSE 461 10wi

(TCP) Socket API – The Typical Case

Server
process

1. Server process is launched, creates a socket, and waits someone
to connect to it.

Client Hosts
Host

01/05/10 CSE 461 10wi

Socket API (2)

Server
process

1. Server process is launched, creates a socket, and waits someone
to connect to it.

2. Client process is launched on some host, creates a socket, and
causes it to be contact the server-side socket. This creates a new
socket at the server, representing this particular connection.

Client Hosts
Host

Client
process

01/05/10 CSE 461 10wi

Socket API (3)

Server
process

1. Server process is launched, creates a socket, and waits someone
to connect to it.

2. Client process is launched on some host, creates a socket, and
causes it to be contact the server-side socket. This creates a new
socket at the server, representing this particular connection.

3. Another client does the same thing…

Client Hosts
Host

Client
process

Client
process

01/05/10 CSE 461 10wi

Socket API

• Somewhat more detail in Chapter 1

• Somewhat more detail as part of HW 0 (except we
will be using Java...)

• What value is there to putting sockets between
processes? (Why not connect to the server process
directly?)

Server
process

Host
Client

process

Client
process

01/05/10 CSE 461 10wi

Part III: A Brief Tour of the Internet

• What happens when you “click” on a web link?

• This is the view from 10,000 ft …

You at home
(client) www.google.com

(server)

Internet
request

response

01/05/10 CSE 461 10wi

9,000 ft: Scalability

• Caching improves scalability

• We cut down on transfers:
– Check cache (local or proxy) for a copy
– Check with server for a new version

Cac
he

“Changed?”

“Here it is.”

“Have it?”
“No”

google

01/05/10 CSE 461 10wi

8,000 ft: Naming (DNS)

• Map domain names to IP network addresses

• All messages are sent using IP addresses
– So we have to translate names to addresses first
– But we cache translations to avoid doing it next time

“What’s the IP address for www.google.com?”

“It’s 74.125.19.147”

128.95.2.106

Nameserver

128.95.2.1

01/05/10 CSE 461 10wi

7,000 ft: Sessions (HTTP)

• A single web page can be multiple “objects”

• Fetch each “object”
– either sequentially or in parallel

GET index.html

GET ad.gif

GET logo.gif

google

01/05/10 CSE 461 10wi

6,000 ft: Reliability (TCP)

• Messages can get lost

• We acknowledge successful receipt and detect and
retransmit lost messages (e.g., timeouts)

(lost) transmission

retransmission

(lost) acknowledgment

retransmission

acknowledgment

01/05/10 CSE 461 10wi

5,000 ft: Congestion (TCP)

• Need to allocate bandwidth among users

• Senders balance available and required bandwidths
by probing network path and observing the response

How fast can
I send?

01/05/10 CSE 461 10wi

4,000 ft: Packets (TCP/IP)

• Long messages are broken into packets
– Maximum Ethernet packet is 1.5 Kbytes
– Typical web page is 10 Kbytes

• Number the segments for reassembly

1. GET2. inde3. x.ht4. ml

GET index.html

01/05/10 CSE 461 10wi

3,000 ft: Routing (IP)

• Packets are directed through many routers

R

R

R

RRHH

H

H

H

R

RH

R

H: Hosts

R: Routers

Internet

01/05/10 CSE 461 10wi

2,000 ft: Multi-access (e.g., Cable)

• May need to share links with other senders

• Poll headend to receive a timeslot to send upstream
– Headend controls all downstream transmissions
– A lower level of addressing (than IP addresses) is used …

why?

Headend

01/05/10 CSE 461 10wi

1,000 ft: Framing/Modulation

• Protect, delimit and modulate payload as signal

• E.g, for cable, take payload, add error protection, header
and framing, then turn into a signal
– Modulate data to assigned channel and time (upstream)
– Downstream, 6 MHz (~30 Mbps), Upstream ~2 MHz (~3 Mbps)

Sync / Unique Payload w/ error correcting codeHeader

01/05/10 CSE 461 10wi

Part 3. Protocols and Layering

• We need abstractions to handle all this system complexity

A protocol is an agreement dictating the form and function

of data exchanged between parties to effect communication

• Two parts:
– Syntax: format -- where the bits go
– Semantics: meaning -- what the words mean, what to do with them

• Examples:
– Ordering food from a drive-through window
– TCP/IP, the Internet protocol
– HTTP, for the Web

01/05/10 CSE 461 10wi

Protocol Standards

• Different functions require different protocols
• Thus there are many, many protocol standards

– E.g., IP, TCP, UDP, HTTP, DNS, FTP, SMTP, NNTP, ARP,
Ethernet/802.3, 802.11, RIP, OSPF, 802.1D, NFS, ICMP,
IGMP, DVMRP, IPSEC, PIM-SM, BGP, …

– every distributed application requires a protocol…

• Organizations: IETF, IEEE, ITU

• IETF (www.ietf.org) specifies Internet-related
protocols
– RFCs (Requests for Comments)
– “We reject kings, presidents and voting. We believe in rough

consensus and running code.” – Dave Clark.

http://www.ietf.org/

01/05/10 CSE 461 10wi

Layering and Protocol Stacks

• Layering is how we combine protocols
– Higher level protocols build on services provided by lower levels
– Peer layers communicate with each other

Layer N+1
e.g., HTTP

Layer N
e.g., TCP

Home PC Firefox

Words

01/05/10 CSE 461 10wi

Example – Layering at work

Ethernet

IP

TCP

CATV

IP

TCP

CATVEthernet

IPIP

host host

home router

01/05/10 CSE 461 10wi

Layering Mechanics

• Encapsulation and de(en)capsulation

Hdr

Hdr Data

Data+

+

Messages
passed

between
layers

01/05/10 CSE 461 10wi

A Packet on the Wire

• Starts looking like an onion:

• This isn’t entirely accurate
– ignores segmentation and reassembly, Ethernet trailers, etc.

• But you can see that:
– layering adds overhead
– one protocol’s header is another protocol’s data

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

Start of packet End of packet

01/05/10 CSE 461 10wi

More Layering Mechanics

• Multiplexing and demultiplexing in a protocol graph

UDPTCP

ARPIP

Ethernet

SMTP HTTP

802.2 identifier

IP protocol field

TCP port number

demux key

01/05/10 CSE 461 10wi

Part 4. OSI/Internet Protocol Stacks

Key Question: What functionality goes in which protocol?

• The “End to End Argument” (Reed, Saltzer, Clark, 1984):

Functionality should be implemented at a lower layer only

if it can be correctly and completely implemented.

(Sometimes an incomplete implementation can be useful

as a performance optimization.)

• Tends to push functions to the endpoints, which has aided the
transparency and extensibility of the Internet.

01/05/10 CSE 461 10wi

Internet Protocol Framework

Network

Link

Transport

Application

IP

Many

(Ethernet, …)

TCP / UDP

Many

(HTTP,SMTP)

Model Protocols The “narrow waist”

01/05/10 CSE 461 10wi

What’s Inside a Packet

FROM=00:30:65:0a:ea:62,
TO=00:30:64:9a:11:22,

SIZE=200,…

FROM=128.95.1.32,
TO=28.2.5.1,

SIZE=200-SIZEOF(Ehdr)

Ethernet Header:

IP Header:

FROM=Port 5000,
TO=Port 80,
Byte#=23,

SIZE=200-SIZEOF(Ehdr)-SIZEOF(IPHdr)

HTTP v.1.0, Internet Explorer v5.1,…

TCP Header:

HTTP Hdr:

IP Hdr Payload (Web object)TCP Hdr HTTP HdrEthernet Hdr

GET http://www.google.comGood Stuff

Top (start)

Bottom (end)

01/05/10 CSE 461 10wi

OSI “Seven Layer” Reference Model

Their functions:

• Up to the application

• Encode/decode messages

• Manage connections

• Reliability, congestion control

• Routing

• Framing, multiple access

• Symbol coding, modulation
Physical

Link

Network

Transport

Session

Presentation

Application

01/05/10 CSE 461 10wi 61

For next time

• Homework 0 is out (linked from syllabus page)

• Sections Thursday intended to help with the HW0

• For next class, please have read Chapter 1

	CSE/EE 461: Introduction to Computer Communications Networks Autumn 2007 Module 1 Course Introduction
	A Network in 461
	Goal of this Course
	Today’s agenda
	Course goals
	Course goals (cont.)
	Last bit of course admin
	To the Internet at large
	Introduction to Networking
	The Familiar Example
	Slide 11
	Slide 12
	Back to the Example: USPS as a Network
	How does the USPS network work?
	Parallels to the Internet
	Parallels to the Internet (cont.)
	Slide 17
	One Last Parallel
	The USPS API
	USPS as Engineering
	USPS Engineering Decisions
	Moral of First Example
	Today's Topics
	Part 1: Network Scalability
	Why is scalability important?
	Implication of Scale I: Sharing
	Implication of Scale II: Intrinsic Unreliability
	Implication of Scale III: Distributed
	Impl. Of Scale IV: Heterogeneous HW/SW
	Implications of Scale V: Autonomous Authorities
	Slide 31
	Implications of Confederation/Autonomy
	Summer 2006: Internet Neutrality
	2007: Cell Service Neutrality
	Part II: The API
	Socket API – The Typical Case
	Socket API (2)
	Socket API (3)
	Socket API
	Part III: A Brief Tour of the Internet
	9,000 ft: Scalability
	8,000 ft: Naming (DNS)
	7,000 ft: Sessions (HTTP)
	6,000 ft: Reliability (TCP)
	5,000 ft: Congestion (TCP)
	4,000 ft: Packets (TCP/IP)
	3,000 ft: Routing (IP)
	2,000 ft: Multi-access (e.g., Cable)
	1,000 ft: Framing/Modulation
	Part 3. Protocols and Layering
	Protocol Standards
	Layering and Protocol Stacks
	Example – Layering at work
	Layering Mechanics
	A Packet on the Wire
	More Layering Mechanics
	Part 4. OSI/Internet Protocol Stacks
	Internet Protocol Framework
	What’s Inside a Packet
	OSI “Seven Layer” Reference Model
	For next time

