Retransmissions, or more formally
Automatic Repeat Request (ARQ)

Sender Receiver Sender Receiver
_ ~ Fra
5 3
I :
S S NS =
\J - B /:,.a
g e
3
£
= N&S

Sender automatically resends after a timeout until a positive
acknowledgment (ACK) is obtained from the receiver

Receiver automatically acknowledges frames (packets) that are not
corrupted or lost in the network

ARQ is generic name for protocols based on this strategy

Timeouts

Retransmission timeout depends on round-trip time
* To send frame and receive an acknowledgement
* In general, need to account for variance on complex paths

03— T 03—

o
h
|
o
h
|

Probability
Probability

0.1

=
-
I

o |J|L| | | ﬂm

0 10 20 30 40 50 0 10 20 30 40 50
Round-trip time {microseconds) Round-trip time (milliseconds)
LAN case — small, Internet case —
regular RTT large, varied RTT

CN5E by Tanenbaum & Wetherall, © Pearson Education-Prentice Hall and D. Wetherall, 2011

Problem cases (due to loss, timeouts)

Sender Receiver

Sender Receiver
- Frame .
£ pot =
0 Fr, 3
E e N o New
g ew = pct frame?
= pCK frame? -

* In the case of ACK loss (or poor choice of timeout) the
receiver can’t distinguish current message from next

The Need for Sequence Numbers

Sender Receiver Sender Receiver
..5 >
3 3
2 £
£ pot =
] Fra 3
-— me O () .
2 ' £ Duplicate!
2 Duplicate! =
= N&S —

* Frame sequence numbers let receiver tell next frame
from duplicate transmission

ACKs need sequence numbers too

Sender Receiver
T Sender Receiver
5
3 -
£ g
= £
| =
? ——
2 B
= (0]
S
\&%g L
Me 7
The Problem Scenario The Solution

* Hm, these things can be tricky!

Stop-and-Wait

Sender Receiver

0

* Only one outstanding 0 =
frame at a time, O or 1. ‘ 1

® Retransmissions re-sent 4 1 —
with same number 0

* Number only needs to 0 —
distinguish between 1

current and next frame] —

— A single bit will do

When everything
IS going well ...

Limitation of Stop-and-Wait

[]

: %

* Lousy performance if transmission time << prop. delay
— How bad? You do the math

e Want to utilize all available bandwidth

— Need to keep more data “in flight”
— How much? The “bandwidth-delay product”:
bits/sec * seconds = bits

* Leads to Sliding Window Protocol

Solution: Allow Multiple Frames in Flight

 This is a foem of pipelining

Rec

Sender

swi|

Sliding Window Protocol

¢ There is some maximum number of un-ACK’ed frames the
sender is allowed to have in flight

— We call this “the window size”
— Example: window size = 2

Sender Receiver

Once the window is
full, each ACK’ed
frame allows the sender
to send one more frame

Time

Sliding Window: Sender

* Assign sequence number to each frame (SeqNum)

®* Maintain three state variables:
— send window size (SWS)
— last acknowledgment received (LAR)
— last frame sent (LFS)

¢ Maintain invariant: LFS - LAR <= SWS

<SWS

f f

LAR LFS

* Advance LAR when ACK arrives
* Buffer up to sws frames

Sliding Window: Receiver

¢ Maintain three state variables
— receive window size (RWS)
— largest frame acceptable (LFA)
— last frame received (LFR)
* Maintain invariant: LFA - LFR <= RWS

< RWS

! }
LFR LFA

® Frame SeqNum arrives:

— if LFR < SegNum < LFA [J accept else discard

— send ACK to tell sender what has arrived (new or repeat)
* Advance LFR (and pass to application) as in-order frames arrive
* Need to buffer up to RWS frames

11

Acknowledgement options

* Different options are possible:

* Send cumulative ACKs —send ACK for largest frame
such that all frames less than this have been received
— Robust to ACK loss but not packet loss

* Send individual ACKs
— Robust to packet loss but not ACK loss!

* Can combine:
— Idea is to tell the sender what frames the receiver already has
— Usually have cumulative ACK plus hints

12

Sliding Window Example

Sender

Receiver

ol1]2]3]4]5]6

7189 10]11]12]13]14] ol1][2]3]4]5]6

718 [910]11]12]13]14]

o|l1]2]3]4]s5]s6

| 7|8]9]1011]12]13]14]

it

| 78 [910]11]12]13]14]

|7]8]9|i0]11]12]13]14]

lo|1]2]3]4]5]s6
‘(ffg// lo|1]2]3]4]s5]s6
lo|1|2]3]a]s5]6]7]8]9]t0]11]12][13]14]
\
xlol1]2]3

lol1]2]3]4]5]6]7[s]9o]t0f11]12]13]14]

4ls5le6|7]8]9]10]11]12]13]14]

X

Y

a3 Jofifa]s3

4lslel7]s8]o]iofi1]12]13]14]

o1]2]304]5]6l7[s8]9o]t0f11]12]13]14]

Sequence Number Space

SegNum field is finite; sequence numbers wrap around

Sequence number space must be larger then number of
outstanding frames

SWS <= MaxSegNum-1 is not sufficient
SWS < (MaxSegNum+1) /2 is correct rule

Intuitively, SegNum “slides” between two halves of sequence
number space

Sliding Window Summary

It is perhaps the best known algorithm in networking

First role is to enable reliable delivery of packets

— Timeouts and acknowledgements

— This has been our focus

Second role is to enable in order delivery of packets

— Receiver doesn’t pass data up to app until it has packets in order
Third role is to enable pipelined transmission

— Crucial for high latency transmissions

Fourth role is to enable flow control

— Prevents fast sender from overflowing slow receiver’s buffer
— We will see this when we get to TCP

When to use ARQ or FEC?

e Will depend on the kind of errors and cost of recovery
e Example: Message with 1000 bits, Prob(bit error) 0.001

— (Case 1: random errors
— Case 2: bursts of 1000 errors

* (Q: What to use in Case 1 and 2?

16

ARQ vs. FEC

e FEC used at low-level to lower residual error rate

* ARQ often used to fix large errors, e.g., packet collision,
and with detection to protect against residual errors

e FEC sometimes used at high level too:
— Real time applications (no time to retransmit!)
— Nice interaction with broadcast (different receiver errors!)

17

Example: 802.11

The standard scheme is:

PHY: FEC on data via interleaving and a binary
convolutional code or LDPC
— rates from %2 to 5/6.

PHY header has 16 bit CRC
Link: 32 bit CRC on frame and retransmission

18

	Retransmissions, or more formally Automatic Repeat Request (ARQ)
	Timeouts
	Problem cases (due to loss, timeouts)
	The Need for Sequence Numbers
	ACKs need sequence numbers too
	Stop-and-Wait
	Limitation of Stop-and-Wait
	Solution: Allow Multiple Frames in Flight
	Sliding Window Protocol
	Sliding Window: Sender
	Sliding Window: Receiver
	Acknowledgement options
	Sliding Window Example
	Sequence Number Space
	Sliding Window Summary
	When to use ARQ or FEC?
	ARQ vs. FEC
	Example: 802.11

