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Where	we	are	in	the	Course	
•  Star9ng	the	Applica9on	Layer!	
–  Builds	distributed	“network	
services”	(DNS,	Web)	on	Transport	
services	

Physical	
Link	

Applica9on	

Network	
Transport	
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Recall	
•  Applica9on	layer	protocols	are	
oOen	part	of	an	“app”	
–  But	don’t	need	a	GUI,	e.g.,	DNS	

TCP	
IP	

802.11	

HTTP	
app	

OS	

User-level	

(NIC)	
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Recall	(2)	
•  Applica9on	layer	messages	are	
oOen	split	over	mul9ple	packets	
–  Or	may	be	aggregated	in	a	packet	…	

802.11	 IP	 TCP	 HTTP	

802.11	 IP	 TCP	 HTTP	

802.11	 IP	 TCP	 HTTP	

HTTP	
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Topic	
•  The	DNS	(Domain	Name	System)	
–  Human-readable	host	names,	and	more	
–  Part	1:	the	distributed	namespace	

www.uw.edu?	

Network	

128.94.155.135	



Names	and	Addresses	
•  Names	are	higher-level	iden9fiers	for	resources	
•  Addresses	are	lower-level	locators	for	resources	

–  Mul9ple	levels,	e.g.	full	name	à	email	à	IP	address	à	Ethernet	address	
•  Resolu9on	(or	lookup)	is	mapping	a	name	to	an	address	
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Directory	

Name,	e.g.	
“Andy	Tanenbaum,”	
or	“flits.cs.vu.nl”		

Address,	e.g.	
“Vrijie	Universiteit,	Amsterdam”	

or	IPv4	“130.30.27.38”	
Lookup	
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Before	the	DNS	–	HOSTS.TXT	
•  Directory	was	a	file	HOSTS.TXT	
regularly	retrieved	for	all	hosts	from	
a	central	machine	at	the	NIC	
(Network	Informa9on	Center)	

•  Names	were	ini9ally	flat,	became	
hierarchical	(e.g.,	lcs.mit.edu)	~85		

•  Neither	manageable	nor	efficient				
as	the	ARPANET	grew	…	
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DNS	
•  A	naming	service	to	map	between	host	

names	and	their	IP	addresses	(and	more)	
–  www.uwa.edu.au	à	130.95.128.140	

•  Goals:	
–  Easy	to	manage	(esp.	with	mul9ple	par9es)	
–  Efficient	(good	performance,	few	resources)	

•  Approach:	
–  Distributed	directory	based	on	a	hierarchical	

namespace	
–  Automated	protocol	to	9e	pieces	together	



DNS	Namespace	
•  Hierarchical,	star9ng	from	“.”	(dot,	typically	omijed)	
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TLDs	(Top-Level	Domains)	
•  Run	by	ICANN	(Internet	Corp.	for	Assigned	Names	and	Numbers)	

–  Star9ng	in	‘98;	naming	is	financial,	poli9cal,	and	interna9onal		J	

•  22+	generic	TLDs	
–  Ini9ally	.com,	.edu	,	.gov.,	.mil,	.org,	.net	
–  Added	.aero,	.museum,	etc.	from	’01	through	.xxx	in	’11	
–  Different	TLDs	have	different	usage	policies	

•  ~250	country	code	TLDs	
–  Two	lejers,	e.g.,	“.au”,	plus	interna9onal	characters	since	2010	
–  Widely	commercialized,	e.g.,	.tv	(Tuvalu)	
–  Many	domain	hacks,	e.g.,	instagr.am	(Armenia),	goo.gl	(Greenland)	
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DNS	Zones	
•  A	zone	is	a	con9guous	por9on	of	the	namespace	
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A	zone	Delega9on	
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DNS	Zones	(2)	
•  Zones	are	the	basis	for	distribu9on	
–  EDU	Registrar	administers	.edu	
–  UW	administers	washington.edu	
–  CS&E	administers	cs.washington.edu	

•  Each	zone	has	a	nameserver	to	
contact	for	informa9on	about	it	
–  Zone	must	include	contacts	for	
delega9ons,	e.g.,	.edu	knows	
nameserver	for	washington.edu	
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DNS	Resolu9on	
•  DNS	protocol	lets	a	host	resolve	
any	host	name	(domain)	to	IP	
address	

•  If	unknown,	can	start	with	the	root	
nameserver	and	work	down	zones	

•  Let’s	see	an	example	first	…	



DNS	Resolu9on	(2)	
•  flits.cs.vu.nl	resolves	robot.cs.washington.edu	
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Itera9ve	vs.	Recursive	Queries	
•  Recursive	query	
–  Nameserver	completes	resolu9on		
and	returns	the	final	answer	

–  E.g.,	flits	à	local	nameserver	
•  Itera9ve	query	
–  Nameserver	returns	the	answer	or	
who	to	contact	next	for	the	answer	

–  E.g.,	local	nameserver	à	all	others	
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Itera9ve	vs.	Recursive	Queries	(2)	
•  Recursive	query	
–  Lets	server	offload	client	burden	
(simple	resolver)	for	manageability	

–  Lets	server	cache	over	a	pool	of		
clients	for	bejer	performance	

•  Itera9ve	query	
–  Lets	server	“file	and	forget”	
–  Easy	to	build	high	load	servers	
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Caching	
•  Resolu9on	latency	should	be	low	
–  Adds	delay	to	web	browsing	

•  Cache	query/responses	to	answer	
future	queries	immediately	
–  Including	par9al	(itera9ve)	answers	
–  Responses	carry	a	TTL	for	caching	

Nameserver	

query	 out	

response	
Cache	



Caching	(2)	
•  flits.cs.vu.nl	now	resolves	eng.washington.edu	
–  And	previous	resolu9ons	cut	out	most	of	the	process	
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1:	query	 2:	query	

UW	nameserver	
(for	washington.edu)	

3:	eng.washington.edu	4:	eng.washington.edu	

Local	nameserver	
(for	cs.vu.nl)	

I	know	the	server	for	
washington.edu!	

Cache	
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Local	Nameservers	
•  Local	nameservers	typically	run	by	
IT	(enterprise,	ISP)	
–  But	may	be	your	host	or	AP	
–  Or	alterna9ves	e.g.,	Google	public	DNS	

•  Clients	need	to	be	able	to	contact	
their	local	nameservers	
–  Typically	configured	via	DHCP	
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Root	Nameservers	
•  Root	(dot)	is	served	by	13	server	names	

–  a.root-servers.net	to	m.root-servers.net	
–  All	nameservers	need	root	IP	addresses	
–  Handled	via	configura9on	file	(named.ca)	

•  There	are	>250	distributed	server	instances	
–  Highly	reachable,	reliable	service	
–  Most	servers	are	reached	by	IP	anycast	

(Mul9ple	loca9ons	adver9se	same	IP!	Routes	
take	client	to	the	closest	one.	See	§5.2.9)	

–  Servers	are	IPv4	and	IPv6	reachable	



Root	Server	Deployment	
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Source:	hjp://www.root-servers.org.	Snapshot	on	27.02.12.	Does	not	represent	current	deployment.	
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DNS	Protocol	
•  Query	and	response	messages	

–  Built	on	UDP	messages,	port	53	
–  ARQ	for	reliability;	server	is	stateless!	
–  Messages	linked	by	a	16-bit	ID	field	

Query	

Response	

Time	

Client	 Server	
ID=0x1234	

ID=0x1234	
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DNS	Protocol	(2)	
•  Service	reliability	via	replicas	
–  Run	mul9ple	nameservers	for	domain	
–  Return	the	list;	clients	use	one	answer	
–  Helps	distribute	load	too	

NS	for	uw.edu?	

A

B

C

Use	A,	B	or	C	
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DNS	Protocol	(3)	
•  Security	is	a	major	issue	

–  Compromise	redirects	to	wrong	site!	
–  Not	part	of	ini9al	protocols	..	

•  DNSSEC	(DNS	Security	Extensions)	
–  Long	under	development,	now	par9ally	
deployed.	We’ll	look	at	it	later	

Um,	security??	
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Topic	
•  Performance	of	HTTP	
–  Parallel	and	persistent	connec9ons	
–  Caching	for	content	reuse	

request	
Network	
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PLT	(Page	Load	Time)	
•  PLT	is	the	key	measure	of	web	
performance		
–  From	click	un9l	user	sees	page	
–  Small	increases	in	PLT	decrease	sales	

•  PLT	depends	on	many	factors	
–  Structure	of	page/content	
–  HTTP	(and	TCP!)	protocol	
–  Network	RTT	and	bandwidth	
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Early	Performance	
•  HTTP/1.0	uses	one	TCP	connec9on	
to	fetch	one	web	resource	
– Made	HTTP	very	easy	to	build	
–  But	gave	fairly	poor	PLT	…	

Client	 Server	
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Early	Performance	(2)	
•  HTTP/1.0	used	one	TCP	connec9on	
to	fetch	one	web	resource	
– Made	HTTP	very	easy	to	build	
–  But	gave	fairly	poor	PLT…	
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Early	Performance	(3)	
•  Many	reasons	why	PLT	is	larger	than	

necessary	
–  Sequen9al	request/responses,	even		
when	to	different	servers	

–  Mul9ple	TCP	connec9on	setups	to									
the	same	server	

–  Mul9ple	TCP	slow-start	phases	

•  Network	is	not	used	effec9vely	
–  Worse	with	many	small	resources	/	page	
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Ways	to	Decrease	PLT	
1.  Reduce	content	size	for	transfer	

–  Smaller	images,	gzip	
2.  Change	HTTP	to	make	bejer													

use	of	available	bandwidth	
3.  Change	HTTP	to	avoid	repeated	

transfers	of	the	same	content	
–  Caching,	and	proxies	

4.  Relocate	content	to	reduce	RTT	
–  CDNs	[later]	

This	
9me	

Later	
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Parallel	Connec9ons	
•  One	simple	way	to	reduce	PLT	

–  Browser	runs	mul9ple	(8,	say)	HTTP			
instances	in	parallel	

–  Server	is	unchanged;	already	handled	
concurrent	requests	for	many	clients	

•  How	does	this	help?	
–  Single	HTTP	wasn’t	using	network	much	…	
–  So	parallel	connec9ons	aren’t	slowed	much	
–  Pulls	in	comple9on	9me	of	last	fetch	
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Persistent	Connec9ons	
•  Parallel	connec9ons	compete	with	
each	other	for	network	resources	
–  1	parallel	client	≈	8	sequen9al	clients?	
–  Exacerbates	network	bursts,	and	loss	

•  Persistent	connec9on	alterna9ve	
– Make	1	TCP	connec9on	to	1	server	
–  Use	it	for	mul9ple	HTTP	requests	



Persistent	Connec9ons	(2)	
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Client	 Server	 Client	 Server	 Client	 Server	

Persistent	 +Pipelining	



Persistent	Connec9ons	(3)	
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One	request	per	connec9on	

Sequen9al	requests	
per	connec9on	

Pipelined	requests	
per	connec9on	
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Persistent	Connec9ons	(4)	
•  Widely	used	as	part	of	HTTP/1.1	
–  Supports	op9onal	pipelining	
–  PLT	benefits	depending	on	page	
structure,	but	easy	on	network	

•  Issues	with	persistent	connec9ons	
–  How	long	to	keep	TCP	connec9on?	
–  Can	it	be	slower?	(Yes.	But	why?)	
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Web	Caching	
•  Users	oOen	revisit	web	pages	
–  Big	win	from	reusing	local	copy!	
–  This	is	caching	

•  Key	ques9on:	
– When	is	it	OK	to	reuse	local	copy?	

Network	Cache	

Local	copies	

Server	
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Web	Caching	(2)	
•  Locally	determine	copy	is	s9ll	valid	
–  Based	on	expiry	informa9on	such	as	
“Expires”	header	from	server	

–  Or	use	a	heuris9c	to	guess	(cacheable,	
freshly	valid,	not	modified	recently)		

–  Content	is	then	available	right	away	

Network	Cache	
Server	
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Web	Caching	(3)	
•  Revalidate	copy	with	server	
–  Based	on	9mestamp	of	copy	such	as	
“Last-Modified”	header	from	server	

–  Or	based	on	content	of	copy	such	as	
“Etag”	header	from	server	

–  Content	is	available	aOer	1	RTT	

Network	Cache	
Server	



Web	Caching	(4)	
•  Pu�ng	the	pieces	together:	
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Web	Proxies	
•  Place	intermediary	between	pool	of	

clients	and	external	web	servers	
–  Benefits	for	clients	include	greater	
caching	and	security	checking	

–  Organiza9onal	access	policies	too!	

•  Proxy	caching	
–  Clients	benefit	from	a	larger,	shared	
cache	

–  Benefits	limited	by	secure	and	dynamic	
content,	as	well	as	“long	tail”	



Web	Proxies	(2)	
•  Clients	contact	proxy;	proxy	contacts	server	
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Cache	

Near	client	
Far	from	client	
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mod_pagespeed	
•  Observa9on:	

–  The	way	pages	are	wrijen	affects								
how	quickly	they	load	

–  Many	books	on	best	prac9ces	for								
page	authors	and	developers	

•  Key	idea:	
–  Have	server	re-write	(compile)	pages							
to	help	them	load	quickly!	

–  mod_pagespeed	is	an	example	
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mod_pagespeed	(2)	
•  Apache	server	extension	

–  SoOware	installed	with	web	server	
–  Rewrites	pages	“on	the	fly”	with	rules	
based	on	best	prac9ces	

•  Example	rewrite	rules:	
–  Minify	Javascript	
–  Flajen	mul9-level	CSS	files	
–  Resize	images	for	client	
–  And	much	more	(100s	of	specific	rules)	


