
CSE	461	University	of	Washington	 1	

Where	we	are	in	the	Course	
•  Star9ng	the	Applica9on	Layer!	
–  Builds	distributed	“network	
services”	(DNS,	Web)	on	Transport	
services	

Physical	
Link	

Applica9on	

Network	
Transport	



CSE	461	University	of	Washington	 2	

Recall	
•  Applica9on	layer	protocols	are	
oOen	part	of	an	“app”	
–  But	don’t	need	a	GUI,	e.g.,	DNS	

TCP	
IP	

802.11	

HTTP	
app	

OS	

User-level	

(NIC)	



CSE	461	University	of	Washington	 3	

Recall	(2)	
•  Applica9on	layer	messages	are	
oOen	split	over	mul9ple	packets	
–  Or	may	be	aggregated	in	a	packet	…	

802.11	 IP	 TCP	 HTTP	

802.11	 IP	 TCP	 HTTP	

802.11	 IP	 TCP	 HTTP	

HTTP	



CSE	461	University	of	Washington	 4	

Topic	
•  The	DNS	(Domain	Name	System)	
–  Human-readable	host	names,	and	more	
–  Part	1:	the	distributed	namespace	

www.uw.edu?	

Network	

128.94.155.135	



Names	and	Addresses	
•  Names	are	higher-level	iden9fiers	for	resources	
•  Addresses	are	lower-level	locators	for	resources	

–  Mul9ple	levels,	e.g.	full	name	à	email	à	IP	address	à	Ethernet	address	
•  Resolu9on	(or	lookup)	is	mapping	a	name	to	an	address	

CSE	461	University	of	Washington	 5	

Directory	

Name,	e.g.	
“Andy	Tanenbaum,”	
or	“flits.cs.vu.nl”		

Address,	e.g.	
“Vrijie	Universiteit,	Amsterdam”	

or	IPv4	“130.30.27.38”	
Lookup	



CSE	461	University	of	Washington	 6	

Before	the	DNS	–	HOSTS.TXT	
•  Directory	was	a	file	HOSTS.TXT	
regularly	retrieved	for	all	hosts	from	
a	central	machine	at	the	NIC	
(Network	Informa9on	Center)	

•  Names	were	ini9ally	flat,	became	
hierarchical	(e.g.,	lcs.mit.edu)	~85		

•  Neither	manageable	nor	efficient				
as	the	ARPANET	grew	…	



CSE	461	University	of	Washington	 7	

DNS	
•  A	naming	service	to	map	between	host	

names	and	their	IP	addresses	(and	more)	
–  www.uwa.edu.au	à	130.95.128.140	

•  Goals:	
–  Easy	to	manage	(esp.	with	mul9ple	par9es)	
–  Efficient	(good	performance,	few	resources)	

•  Approach:	
–  Distributed	directory	based	on	a	hierarchical	

namespace	
–  Automated	protocol	to	9e	pieces	together	



DNS	Namespace	
•  Hierarchical,	star9ng	from	“.”	(dot,	typically	omijed)	

CSE	461	University	of	Washington	 8	



TLDs	(Top-Level	Domains)	
•  Run	by	ICANN	(Internet	Corp.	for	Assigned	Names	and	Numbers)	

–  Star9ng	in	‘98;	naming	is	financial,	poli9cal,	and	interna9onal		J	

•  22+	generic	TLDs	
–  Ini9ally	.com,	.edu	,	.gov.,	.mil,	.org,	.net	
–  Added	.aero,	.museum,	etc.	from	’01	through	.xxx	in	’11	
–  Different	TLDs	have	different	usage	policies	

•  ~250	country	code	TLDs	
–  Two	lejers,	e.g.,	“.au”,	plus	interna9onal	characters	since	2010	
–  Widely	commercialized,	e.g.,	.tv	(Tuvalu)	
–  Many	domain	hacks,	e.g.,	instagr.am	(Armenia),	goo.gl	(Greenland)	

CSE	461	University	of	Washington	 9	



DNS	Zones	
•  A	zone	is	a	con9guous	por9on	of	the	namespace	

CSE	461	University	of	Washington	 10	

A	zone	Delega9on	



CSE	461	University	of	Washington	 11	

DNS	Zones	(2)	
•  Zones	are	the	basis	for	distribu9on	
–  EDU	Registrar	administers	.edu	
–  UW	administers	washington.edu	
–  CS&E	administers	cs.washington.edu	

•  Each	zone	has	a	nameserver	to	
contact	for	informa9on	about	it	
–  Zone	must	include	contacts	for	
delega9ons,	e.g.,	.edu	knows	
nameserver	for	washington.edu	



CSE	461	University	of	Washington	 12	

DNS	Resolu9on	
•  DNS	protocol	lets	a	host	resolve	
any	host	name	(domain)	to	IP	
address	

•  If	unknown,	can	start	with	the	root	
nameserver	and	work	down	zones	

•  Let’s	see	an	example	first	…	



DNS	Resolu9on	(2)	
•  flits.cs.vu.nl	resolves	robot.cs.washington.edu	

CSE	461	University	of	Washington	 13	



CSE	461	University	of	Washington	 14	

Itera9ve	vs.	Recursive	Queries	
•  Recursive	query	
–  Nameserver	completes	resolu9on		
and	returns	the	final	answer	

–  E.g.,	flits	à	local	nameserver	
•  Itera9ve	query	
–  Nameserver	returns	the	answer	or	
who	to	contact	next	for	the	answer	

–  E.g.,	local	nameserver	à	all	others	



CSE	461	University	of	Washington	 15	

Itera9ve	vs.	Recursive	Queries	(2)	
•  Recursive	query	
–  Lets	server	offload	client	burden	
(simple	resolver)	for	manageability	

–  Lets	server	cache	over	a	pool	of		
clients	for	bejer	performance	

•  Itera9ve	query	
–  Lets	server	“file	and	forget”	
–  Easy	to	build	high	load	servers	



CSE	461	University	of	Washington	 16	

Caching	
•  Resolu9on	latency	should	be	low	
–  Adds	delay	to	web	browsing	

•  Cache	query/responses	to	answer	
future	queries	immediately	
–  Including	par9al	(itera9ve)	answers	
–  Responses	carry	a	TTL	for	caching	

Nameserver	

query	 out	

response	
Cache	



Caching	(2)	
•  flits.cs.vu.nl	now	resolves	eng.washington.edu	
–  And	previous	resolu9ons	cut	out	most	of	the	process	

CSE	461	University	of	Washington	 17	

1:	query	 2:	query	

UW	nameserver	
(for	washington.edu)	

3:	eng.washington.edu	4:	eng.washington.edu	

Local	nameserver	
(for	cs.vu.nl)	

I	know	the	server	for	
washington.edu!	

Cache	



CSE	461	University	of	Washington	 18	

Local	Nameservers	
•  Local	nameservers	typically	run	by	
IT	(enterprise,	ISP)	
–  But	may	be	your	host	or	AP	
–  Or	alterna9ves	e.g.,	Google	public	DNS	

•  Clients	need	to	be	able	to	contact	
their	local	nameservers	
–  Typically	configured	via	DHCP	



CSE	461	University	of	Washington	 19	

Root	Nameservers	
•  Root	(dot)	is	served	by	13	server	names	

–  a.root-servers.net	to	m.root-servers.net	
–  All	nameservers	need	root	IP	addresses	
–  Handled	via	configura9on	file	(named.ca)	

•  There	are	>250	distributed	server	instances	
–  Highly	reachable,	reliable	service	
–  Most	servers	are	reached	by	IP	anycast	

(Mul9ple	loca9ons	adver9se	same	IP!	Routes	
take	client	to	the	closest	one.	See	§5.2.9)	

–  Servers	are	IPv4	and	IPv6	reachable	



Root	Server	Deployment	

CSE	461	University	of	Washington	 20	

Source:	hjp://www.root-servers.org.	Snapshot	on	27.02.12.	Does	not	represent	current	deployment.	



CSE	461	University	of	Washington	 21	

DNS	Protocol	
•  Query	and	response	messages	

–  Built	on	UDP	messages,	port	53	
–  ARQ	for	reliability;	server	is	stateless!	
–  Messages	linked	by	a	16-bit	ID	field	

Query	

Response	

Time	

Client	 Server	
ID=0x1234	

ID=0x1234	



CSE	461	University	of	Washington	 22	

DNS	Protocol	(2)	
•  Service	reliability	via	replicas	
–  Run	mul9ple	nameservers	for	domain	
–  Return	the	list;	clients	use	one	answer	
–  Helps	distribute	load	too	

NS	for	uw.edu?	

A

B

C

Use	A,	B	or	C	



CSE	461	University	of	Washington	 23	

DNS	Protocol	(3)	
•  Security	is	a	major	issue	

–  Compromise	redirects	to	wrong	site!	
–  Not	part	of	ini9al	protocols	..	

•  DNSSEC	(DNS	Security	Extensions)	
–  Long	under	development,	now	par9ally	
deployed.	We’ll	look	at	it	later	

Um,	security??	



CSE	461	University	of	Washington	 24	

Topic	
•  Performance	of	HTTP	
–  Parallel	and	persistent	connec9ons	
–  Caching	for	content	reuse	

request	
Network	



CSE	461	University	of	Washington	 25	

PLT	(Page	Load	Time)	
•  PLT	is	the	key	measure	of	web	
performance		
–  From	click	un9l	user	sees	page	
–  Small	increases	in	PLT	decrease	sales	

•  PLT	depends	on	many	factors	
–  Structure	of	page/content	
–  HTTP	(and	TCP!)	protocol	
–  Network	RTT	and	bandwidth	



CSE	461	University	of	Washington	 26	

Early	Performance	
•  HTTP/1.0	uses	one	TCP	connec9on	
to	fetch	one	web	resource	
– Made	HTTP	very	easy	to	build	
–  But	gave	fairly	poor	PLT	…	

Client	 Server	



CSE	461	University	of	Washington	 27	

Early	Performance	(2)	
•  HTTP/1.0	used	one	TCP	connec9on	
to	fetch	one	web	resource	
– Made	HTTP	very	easy	to	build	
–  But	gave	fairly	poor	PLT…	
	



CSE	461	University	of	Washington	 28	

Early	Performance	(3)	
•  Many	reasons	why	PLT	is	larger	than	

necessary	
–  Sequen9al	request/responses,	even		
when	to	different	servers	

–  Mul9ple	TCP	connec9on	setups	to									
the	same	server	

–  Mul9ple	TCP	slow-start	phases	

•  Network	is	not	used	effec9vely	
–  Worse	with	many	small	resources	/	page	



CSE	461	University	of	Washington	 29	

Ways	to	Decrease	PLT	
1.  Reduce	content	size	for	transfer	

–  Smaller	images,	gzip	
2.  Change	HTTP	to	make	bejer													

use	of	available	bandwidth	
3.  Change	HTTP	to	avoid	repeated	

transfers	of	the	same	content	
–  Caching,	and	proxies	

4.  Relocate	content	to	reduce	RTT	
–  CDNs	[later]	

This	
9me	

Later	



CSE	461	University	of	Washington	 30	

Parallel	Connec9ons	
•  One	simple	way	to	reduce	PLT	

–  Browser	runs	mul9ple	(8,	say)	HTTP			
instances	in	parallel	

–  Server	is	unchanged;	already	handled	
concurrent	requests	for	many	clients	

•  How	does	this	help?	
–  Single	HTTP	wasn’t	using	network	much	…	
–  So	parallel	connec9ons	aren’t	slowed	much	
–  Pulls	in	comple9on	9me	of	last	fetch	



CSE	461	University	of	Washington	 31	

Persistent	Connec9ons	
•  Parallel	connec9ons	compete	with	
each	other	for	network	resources	
–  1	parallel	client	≈	8	sequen9al	clients?	
–  Exacerbates	network	bursts,	and	loss	

•  Persistent	connec9on	alterna9ve	
– Make	1	TCP	connec9on	to	1	server	
–  Use	it	for	mul9ple	HTTP	requests	



Persistent	Connec9ons	(2)	

CSE	461	University	of	Washington	 32	

Client	 Server	 Client	 Server	 Client	 Server	

Persistent	 +Pipelining	



Persistent	Connec9ons	(3)	

CSE	461	University	of	Washington	 33	

One	request	per	connec9on	

Sequen9al	requests	
per	connec9on	

Pipelined	requests	
per	connec9on	

	



CSE	461	University	of	Washington	 34	

Persistent	Connec9ons	(4)	
•  Widely	used	as	part	of	HTTP/1.1	
–  Supports	op9onal	pipelining	
–  PLT	benefits	depending	on	page	
structure,	but	easy	on	network	

•  Issues	with	persistent	connec9ons	
–  How	long	to	keep	TCP	connec9on?	
–  Can	it	be	slower?	(Yes.	But	why?)	



CSE	461	University	of	Washington	 35	

Web	Caching	
•  Users	oOen	revisit	web	pages	
–  Big	win	from	reusing	local	copy!	
–  This	is	caching	

•  Key	ques9on:	
– When	is	it	OK	to	reuse	local	copy?	

Network	Cache	

Local	copies	

Server	



CSE	461	University	of	Washington	 36	

Web	Caching	(2)	
•  Locally	determine	copy	is	s9ll	valid	
–  Based	on	expiry	informa9on	such	as	
“Expires”	header	from	server	

–  Or	use	a	heuris9c	to	guess	(cacheable,	
freshly	valid,	not	modified	recently)		

–  Content	is	then	available	right	away	

Network	Cache	
Server	



CSE	461	University	of	Washington	 37	

Web	Caching	(3)	
•  Revalidate	copy	with	server	
–  Based	on	9mestamp	of	copy	such	as	
“Last-Modified”	header	from	server	

–  Or	based	on	content	of	copy	such	as	
“Etag”	header	from	server	

–  Content	is	available	aOer	1	RTT	

Network	Cache	
Server	



Web	Caching	(4)	
•  Pu�ng	the	pieces	together:	

CSE	461	University	of	Washington	 38	



CSE	461	University	of	Washington	 39	

Web	Proxies	
•  Place	intermediary	between	pool	of	

clients	and	external	web	servers	
–  Benefits	for	clients	include	greater	
caching	and	security	checking	

–  Organiza9onal	access	policies	too!	

•  Proxy	caching	
–  Clients	benefit	from	a	larger,	shared	
cache	

–  Benefits	limited	by	secure	and	dynamic	
content,	as	well	as	“long	tail”	



Web	Proxies	(2)	
•  Clients	contact	proxy;	proxy	contacts	server	

CSE	461	University	of	Washington	 40	

Cache	

Near	client	
Far	from	client	



CSE	461	University	of	Washington	 41	

mod_pagespeed	
•  Observa9on:	

–  The	way	pages	are	wrijen	affects								
how	quickly	they	load	

–  Many	books	on	best	prac9ces	for								
page	authors	and	developers	

•  Key	idea:	
–  Have	server	re-write	(compile)	pages							
to	help	them	load	quickly!	

–  mod_pagespeed	is	an	example	



CSE	461	University	of	Washington	 42	

mod_pagespeed	(2)	
•  Apache	server	extension	

–  SoOware	installed	with	web	server	
–  Rewrites	pages	“on	the	fly”	with	rules	
based	on	best	prac9ces	

•  Example	rewrite	rules:	
–  Minify	Javascript	
–  Flajen	mul9-level	CSS	files	
–  Resize	images	for	client	
–  And	much	more	(100s	of	specific	rules)	


