Computer Networks

Shyam Gollakota

Protocols and Layers

- <u>Protocols</u> and <u>layering</u> is the main structuring method used to divide up network functionality
 - Each instance of a protocol talks
 virtually to its <u>peer</u> using the protocol
 - Each instance of a protocol uses only the services of the lower layer

Protocols and Layers (3)

Protocols are horizontal, layers are vertical

Protocols and Layers (4)

Set of protocols in use is called a protocol stack

Protocols and Layers (6)

- Protocols you've probably heard of:
 - TCP, IP, 802.11, Ethernet, HTTP, SSL,
 DNS, ... and many more
- An example protocol stack
 - Used by a web browser on a host that is wirelessly connected to the Internet

(Browser
	HTTP
	ТСР
	IP
	802.11

Encapsulation

- <u>Encapsulation</u> is the mechanism used to effect protocol layering
 - Lower layer wraps higher layer content, adding its own information to make a new message for delivery
 - Like sending a letter in an envelope; postal service doesn't look inside

Encapsulation (3)

- Message "on the wire" begins to look like an onion
 - Lower layers are outermost

Encapsulation (4)

Advantage of Layering

Information hiding and reuse

Advantage of Layering (2)

Information hiding and reuse

Advantage of Layering (3)

• Using information hiding to connect different systems

Advantage of Layering (4)

• Using information hiding to connect different systems

Disadvantage of Layering

• ??

Internet Reference Model

- A four layer model based on experience; omits some OSI layers and uses IP as the network layer.
 - 4 Application
 - 3 Transport
 - 2 Internet
 - 1 Link

- Programs that use network service
- Provides end-to-end data delivery
- Send packets over multiple networks
- Send frames over a link

Internet Reference Model (3)

- IP is the "narrow waist" of the Internet
 - Supports many different links below and apps above

Layer-based Names (2)

• For devices in the network:

Layer-based Names (3)

• For devices in the network:

But they all look like this!

Scope of the Physical Layer

- Concerns how signals are used to transfer message bits over a link
 - Wires etc. carry analog signals
 - We want to send digital bits

Simple Link Model

- We'll end with an abstraction of a physical channel
 - <u>Rate</u> (or bandwidth, capacity, speed) in bits/second
 - Delay in seconds, related to length

- Other important properties:
 - Whether the channel is broadcast, and its error rate

Message Latency

- <u>Latency</u> is the delay to send a message over a link
 - Transmission delay: time to put M-bit message "on the wire"

- <u>Propagation delay</u>: time for bits to propagate across the wire

- Combining the two terms we have:

Message Latency (2)

- <u>Latency</u> is the delay to send a message over a link
 - Transmission delay: time to put M-bit message "on the wire"

T-delay = M (bits) / Rate (bits/sec) = M/R seconds

- <u>Propagation delay</u>: time for bits to propagate across the wire

P-delay = Length / speed of signals = Length / $\frac{2}{3}c = D$ seconds

- Combining the two terms we have: L = M/R + D

Metric Units

• The main prefixes we use:

Prefix	Exp.	prefix	exp.
K(ilo)	10 ³	m(illi)	10 ⁻³
M(ega)	10 ⁶	µ(micro)	10 ⁻⁶
G(iga)	10 ⁹	n(ano)	10 ⁻⁹

- Use powers of 10 for rates, 2 for storage
 - 1 Mbps = 1,000,000 bps, 1 KB = 2¹⁰ bytes
- "B" is for bytes, "b" is for bits

Latency Examples (2)

• "Dialup" with a telephone modem:

D = 5 ms, R = 56 kbps, M = 1250 bytes

- $L = 5 \text{ ms} + (1250 \text{ x8})/(56 \text{ x} 10^3) \text{ sec} = 184 \text{ ms}!$
- Broadband cross-country link:

D = 50 ms, R = 10 Mbps, M = 1250 bytes

 $L = 50 \text{ ms} + (1250 \text{ x8}) / (10 \text{ x} 10^6) \text{ sec} = 51 \text{ ms}$

- A long link or a slow rate means high latency
 - Often, one delay component dominates

Bandwidth-Delay Product

• Messages take space on the wire!

• The amount of data in flight is the bandwidth-delay (BD) product

 $BD = R \times D$

- Measure in bits, or in messages
- Small for LANs, big for "long fat" pipes

Bandwidth-Delay Example (2)

- Fiber at home, cross-country R=40 Mbps, D=50 ms BD = $40 \times 10^6 \times 50 \times 10^{-3}$ bits = 2000 Kbit = 250 KB
- That's quite a lot of data "in the network"!

Frequency Representation

 A signal over time can be represented by its frequency components (called Fourier analysis)

Effect of Less Bandwidth

Fewer frequencies (=less bandwidth) degrades signal

Signals over a Wire (2)

• Example:

2: Attenuation:

Sent signal

> 3: Bandwidth:

4: Noise:

Signals over Wireless

- Signals transmitted on a carrier frequency, like fiber
- Travel at speed of light, spread out and attenuate faster than 1/dist²
- Multiple signals on the same frequency interfere at a receiver

Signals over Wireless (5)

- Various other effects too!
 - Wireless propagation is complex, depends on environment
- Some key effects are highly frequency dependent,
 - E.g., <u>multipath</u> at microwave frequencies

Wireless Multipath

- Signals bounce off objects and take multiple paths
 - Some frequencies attenuated at receiver, varies with location
 - Messes up signal; handled with sophisticated methods (§2.5.3)

Wireless

- Sender radiates signal over a region
 - In many directions, unlike a wire, to potentially many receivers
 - Nearby signals (same freq.) <u>interfere</u> at a receiver; need to coordinate use

UNITED

STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM

ACTIVITY CODE

SERVICE	EXAMPLE	pesceletion
Prinary	FILED	Capital Latiws
Secondary	Highlie .	fat Capital with lower case letters

U.S. DEPARTMENT OF COMMERCE National Telescrimunications and Information Administ Office of Spectrum Management Office of Spectrum Management

Wireless (2)

• Microwave, e.g., 3G, and unlicensed (ISM) frequencies, e.g., WiFi, are widely used for computer networking

Topic

- We've talked about signals representing bits. How, exactly?
 - This is the topic of modulation

A Simple Modulation

- Let a high voltage (+V) represent a 1, and low voltage (-V) represent a 0
 - This is called NRZ (Non-Return to Zero)

A Simple Modulation (2)

- Let a high voltage (+V) represent a 1, and low voltage (-V) represent a 0
 - This is called NRZ (Non-Return to Zero)

Modulation

Topic

- How rapidly can we send information over a link?
 - <u>Nyquist</u> limit (~1924) »
 - <u>Shannon</u> capacity (1948) »
- Practical systems are devised to approach these limits

Key Channel Properties

- The bandwidth (B), signal strength (S), and noise strength (N)
 - B limits the rate of transitions
 - S and N limit how many signal levels we can distinguish

Nyquist Limit

• The maximum <u>symbol</u> rate is 2B

1010101010101010101

Thus if there are V signal levels, ignoring noise, the maximum bit rate is: R = 2B log₂V bits/sec

Claude Shannon (1916-2001)

- Father of information theory
 - "A Mathematical Theory of Communication", 1948
- Fundamental contributions to digital computers, security, and communications

Electromechanical mouse that "solves" mazes!

Credit: Courtesy MIT Museum

Shannon Capacity

- How many levels we can distinguish depends on S/N
 - Or SNR, the <u>Signal-to-Noise Ratio</u>
 - Note noise is random, hence some errors
- SNR given on a log-scale in deciBels:

$$-SNR_{dB} = 10log_{10}(S/N)$$

Shannon Capacity (2)

 Shannon limit is for capacity (C), the maximum information carrying rate of the channel:

 $C = B \log_2(1 + S/(BN)) bits/sec$

Wired/Wireless Perspective

- Wires, and Fiber
 - − Engineer link to have requisite SNR and B
 →Can fix data rate
- Wireless
 - Given B, but SNR varies greatly, e.g., up to 60 dB!
 →Can't design for worst case, must adapt data rate

Wired/Wireless Perspective (2)

- Wires, and Fiber Engineer SNR for data rate
 - − Engineer link to have requisite SNR and B
 →Can fix data rate
- Wireless
 Adapt data rate to SNR
 - Given B, but SNR varies greatly, e.g., up to 60 dB!
 - →Can't design for worst case, must adapt data rate

Putting it all together – DSL

- DSL (Digital Subscriber Line) is widely used for broadband; many variants offer 10s of Mbps
 - Reuses twisted pair telephone line to the home; it has up to ~2 MHz of bandwidth but uses only the lowest ~4 kHz

DSL (2)

- DSL uses passband modulation (called OFDM)
 - Separate bands for upstream and downstream (larger)
 - Modulation varies both amplitude and phase (called QAM)
 - High SNR, up to 15 bits/symbol, low SNR only 1 bit/symbol

