
CSE 461 University of Washington 1

Where we are in the Course

• Moving on to the Link Layer!

Physical

Link

Network

Transport

Application

CSE 461 University of Washington 2

Scope of the Link Layer
• Concerns how to transfer messages

over one or more connected links

– Messages are frames, of limited size

– Builds on the physical layer

Frame

Typical Implementation of Layers (2)

CSE 461 University of Washington 3

CSE 461 University of Washington 4

Functions of the Link Layer
1. Framing

– Delimiting start/end of frames

2. Error detection and correction
– Handling errors

3. Retransmissions
– Handling loss

4. Multiple Access
– 802.11, classic Ethernet

5. Switching
– Modern Ethernet

CSE 461 University of Washington 5

Topic

• The Physical layer gives us a stream
of bits. How do we interpret it as a
sequence of frames?

…10110 …

Um?

CSE 461 University of Washington 6

Framing Methods

• We’ll look at:
– Byte count (motivation)»

– Byte stuffing »

– Bit stuffing »

• In practice, the physical layer often
helps to identify frame boundaries
– E.g., Ethernet, 802.11

CSE 461 University of Washington 7

Byte Count

• First try:

– Let’s start each frame with a
length field!

– It’s simple, and hopefully good
enough …

Byte Count (2)

• How well do you think it works?

CSE 461 University of Washington 8

Byte Count (3)
• Difficult to re-synchronize after framing error

– Want a way to scan for a start of frame

CSE 461 University of Washington 9

CSE 461 University of Washington 10

Byte Stuffing
• Better idea:

– Have a special flag byte value that
means start/end of frame

– Replace (“stuff”) the flag inside the
frame with an escape code

– Complication: have to escape the
escape code too!

Byte Stuffing (2)
• Rules:

– Replace each FLAG in data with ESC FLAG

– Replace each ESC in data with ESC ESC

CSE 461 University of Washington 11

Byte Stuffing (3)
• Now any unescaped FLAG is the start/end of a frame

CSE 461 University of Washington 12

CSE 461 University of Washington 13

Bit Stuffing

• Can stuff at the bit level too

– Call a flag six consecutive 1s

– On transmit, after five 1s in the
data, insert a 0

– On receive, a 0 after five 1s is
deleted

Bit Stuffing (2)

• Example:

CSE 461 University of Washington 14

Transmitted bits
with stuffing

Data bits

Bit Stuffing (3)

• So how does it compare with byte stuffing?

CSE 461 University of Washington 15

Transmitted bits
with stuffing

Data bits

CSE 461 University of Washington 16

Error Correction and Detections

• Some bits will be received in error due
to noise. What can we do?
– Detect errors with codes »

– Correct errors with codes »
– Retransmit lost frames

• Reliability is a concern that cuts
across the layers – we’ll see it again

Later

CSE 461 University of Washington 17

Approach – Add Redundancy

• Error detection codes
– Add check bits to the message bits to let

some errors be detected

• Error correction codes
– Add more check bits to let some errors be

corrected

• Key issue is now to structure the code
to detect many errors with few check
bits and modest computation

CSE 461 University of Washington 18

Motivating Example

• A simple code to handle errors:

– Send two copies! Error if different.

• How good is this code?

– How many errors can it detect/correct?

– How many errors will make it fail?

CSE 461 University of Washington 19

Motivating Example (2)

• We want to handle more errors
with less overhead

– Will look at better codes; they are
applied mathematics

– But, they can’t handle all errors

– And they focus on accidental errors
(will look at secure hashes later)

CSE 461 University of Washington 20

Using Error Codes
• Codeword consists of D data plus R

check bits (=systematic block code)

• Sender:

– Compute R check bits based on the D data
bits; send the codeword of D+R bits

D R=fn(D)

Data bits Check bits

CSE 461 University of Washington 21

Using Error Codes (2)
• Receiver:

– Receive D+R bits with unknown errors

– Recompute R check bits based on the
D data bits; error if R doesn’t match R’

D R’

Data bits Check bits

R=fn(D)
=?

CSE 461 University of Washington 22

Intuition for Error Codes
• For D data bits, R check bits:

• Randomly chosen codeword is unlikely
to be correct; overhead is low

All
codewords

Correct
codewords

CSE 461 University of Washington 23

R.W. Hamming (1915-1998)

• Much early work on codes:

– “Error Detecting and Error Correcting
Codes”, BSTJ, 1950

• See also:

– “You and Your Research”, 1986

Source: IEEE GHN, © 2009 IEEE

CSE 461 University of Washington 24

Hamming Distance

• Distance is the number of bit flips
needed to change D1 to D2

• Hamming distance of a code is the
minimum distance between any
pair of codewords

CSE 461 University of Washington 25

Hamming Distance (2)

• Error detection:

– For a code of distance d+1, up to d
errors will always be detected

CSE 461 University of Washington 26

Hamming Distance (3)

• Error correction:

– For a code of distance 2d+1, up to d
errors can always be corrected by
mapping to the closest codeword

