Where we are in the Course

- Starting the Network Layer!
 - Builds on the link layer. <u>Routers</u> send <u>packets</u> over multiple networks

Application
Transport
Network
Link
Physical

Why do we need a Network layer?

 We can already build networks with links and switches and send frames between hosts ...

Shortcomings of Switches

- Don't scale to large networks
 - Blow up of routing table, broadcast

Shortcomings of Switches (2)

- Don't work across more than one link layer technology
 - Hosts on Ethernet + 3G + 802.11 ...

Shortcomings of Switches (3)

- 3. Don't give much traffic control
 - Want to plan routes / bandwidth

Network Layer Approach

- Scaling:
 - Hierarchy, in the form of prefixes
- Heterogeneity:
 - IP for internetworking
- Bandwidth Control:
 - Lowest-cost routing
 - Later QOS (Quality of Service)

Topics

- Network service models
 - Datagrams (packets), virtual circuits
- IP (Internet Protocol)
 - Internetworking
 - Forwarding (Longest Matching Prefix)
 - Helpers: ARP and DHCP
 - Fragmentation and MTU discovery
 - Errors: ICMP (traceroute!)
- IPv6, the future of IP
- NAT, a "middlebox"
- Routing algorithms

This time

Next time

Routing vs. Forwarding

- Routing is the process of deciding in which direction to send traffic
 - Network wide (global) and expensive

Routing vs. Forwarding (2)

- Forwarding is the process of sending a packet on its way
 - Node process (local) and fast

Topic

- What kind of service does the Network layer provide to the Transport layer?
 - How is it implemented at routers?

Two Network Service Models

- Datagrams, or connectionless service
 - Like postal letters
 - (This one is IP)

- Virtual circuits, or connectionoriented service
 - Like a telephone call

Store-and-Forward Packet Switching

- Both models are implemented with store-and-forward packet switching
 - Routers receive a complete packet, storing it temporarily if necessary before forwarding it onwards
 - We use statistical multiplexing to share link bandwidth over time

Store-and-Forward (2)

Switching element has internal buffering for contention

Store-and-Forward (3)

- Simplified view with per port output buffering
 - Buffer is typically a FIFO (First In First Out) queue
 - If full, packets are discarded (congestion, later)

Datagram Model

 Packets contain a destination address; each router uses it to forward each packet, possibly on different paths

Datagram Model (2)

- Each router has a forwarding table keyed by address
 - Gives next hop for each destination address; may change

IP (Internet Protocol)

- Network layer of the Internet, uses datagrams (next)
 - IPv4 carries 32 bit addresses on each packet (often 1.5 KB)

Virtual Circuit Model

- Three phases:
 - 1. Connection establishment, circuit is set up
 - Path is chosen, circuit information stored in routers
 - 2. Data transfer, circuit is used
 - Packets are forwarded along the path
 - 3. Connection teardown, circuit is deleted
 - Circuit information is removed from routers
- Just like a telephone circuit, but virtual in the sense that no bandwidth need be reserved; statistical sharing of links

Virtual Circuits (2)

- Packets only contain a short label to identify the circuit
 - Labels don't have any global meaning, only unique for a link

Virtual Circuits (3)

- Each router has a forwarding table keyed by circuit
 - Gives output line and next label to place on packet

Virtual Circuits (4)

- Each router has a forwarding table keyed by circuit
 - Gives output line and next label to place on packet

MPLS (Multi-Protocol Label Switching, §5.6.5)

- A virtual-circuit like technology widely used by ISPs
 - ISP sets up circuits inside their backbone ahead of time
 - ISP adds MPLS label to IP packet at ingress, undoes at egress

Datagrams vs Virtual Circuits

Complementary strengths

Issue	Datagrams	Virtual Circuits
Setup phase	Not needed	Required
Router state	Per destination	Per connection
Addresses	Packet carries full address	Packet carries short label
Routing	Per packet	Per circuit
Failures	Easier to mask	Difficult to mask
Quality of service	Difficult to add	Easier to add

Topic

- How do we connect different networks together?
 - This is called <u>internetworking</u>
 - We'll look at how IP does it

How Networks May Differ

- Basically, in a lot of ways:
 - Service model (datagrams, VCs)
 - Addressing (what kind)
 - QOS (priorities, no priorities)
 - Packet sizes
 - Security (whether encrypted)
- Internetworking hides the differences with a common protocol. (Uh oh.)

Connecting Datagram and VC networks

- An example to show that it's not so easy
 - Need to map destination address to a VC and vice-versa
 - A bit of a "road bump", e.g., might have to set up a VC

Internetworking – Cerf and Kahn

- Pioneered by Cerf and Kahn, the "fathers of the Internet"
 - In 1974, later led to TCP/IP
- Tackled the problems of interconnecting networks
 - Instead of mandating a single network technology

Vint Cerf

© 2009 IEEE

Bob Kahn

© 2009 IEEE

Internet Reference Model

- IP is the "narrow waist" of the Internet
 - Supports many different links below and apps above

IP as a Lowest Common Denominator

- Suppose only some networks support QOS or security etc.
 - Difficult for internetwork to support
- Pushes IP to be a "lowest common denominator" protocol
 - Asks little of lower-layer networks
 - Gives little as a higher layer service

IPv4 (Internet Protocol)

- Various fields to meet straightforward needs
 - Version, Header (IHL) and Total length, Protocol, and Header Checksum

IPv4 (2)

- Network layer of the Internet, uses datagrams
 - Provides a layer of addressing above link addresses (next)

IPv4 (3)

- Some fields to handle packet size differences (later)
 - Identification, Fragment offset, Fragment control bits

IPv4 (4)

- Other fields to meet other needs (later, later)
 - Differentiated Services, Time to live (TTL)

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey