Recap

We want the network layer to:

Scale to large networks
Using addresses with hierarchy
Support diverse technologies
Internetworking with IP
Use link bandwidth well
Lowest-cost routing

This lecture
More later
Next time

IP Addresses

- IPv4 uses 32-bit addresses
 - Later we'll see IPv6, which uses 128-bit addresses
- Written in "dotted quad" notation
 - Four 8-bit numbers separated by dots

IP Prefixes

- Addresses are allocated in blocks called <u>prefixes</u>
 - Addresses in an L-bit prefix have the same top L bits
 - There are 2^{32-L} addresses aligned on 2^{32-L} boundary

IP Prefixes (2)

- Written in "IP address/length" notation
 - Address is lowest address in the prefix, length is prefix bits
 - E.g., 128.13.0.0/16 is 128.13.0.0 to 128.13.255.255
 - So a /24 ("slash 24") is 256 addresses, and a /32 is one address

↔ 128.13.0.0/16

Classful IP Addressing

- Originally, IP addresses came in fixed size blocks with the class/size encoded in the high-order bits
 - They still do, but the classes are now ignored

IP Forwarding

All addresses on one network belong to the same prefix

Node uses a table that lists the next hop for prefixes

Prefix	Next Hop	
192.24.0.0/19	D	
192.24.12.0/22	В	
A D		

Longest Matching Prefix

- Prefixes in the table might overlap!
 - Combines hierarchy with flexibility
- Longest matching prefix forwarding rule:
 - For each packet, find the longest prefix that contains the destination address, i.e., the most specific entry
 - Forward the packet to the next hop router for that prefix

Longest Matching Prefix (2)

Host/Router Distinction

- In the Internet:
 - Routers do the routing, know which way to all destinations
 - Hosts send remote traffic (out of prefix) to nearest router

Host Forwarding Table

- Give using longest matching prefix
 - 0.0.0.0/0 is a default route that catches all IP addresses

Prefix	Next Hop	
My network prefix	Send to that IP	
0.0.0.0/0	Send to my router	

Flexibility of Longest Matching Prefix

- Can provide default behavior, with less specifics
 - To send traffic going outside an organization to a border router
- Can special case behavior, with more specifics
 - For performance, economics, security, ...

Performance of Longest Matching Prefix

- Uses hierarchy for a compact table
 - Relies on use of large prefixes
- Lookup more complex than table
 - Used to be a concern for fast routers
 - Not an issue in practice these days

Topic

- Filling in the gaps we need to make for IP forwarding work in practice
 - Getting IP addresses (DHCP) »
 - Mapping IP to link addresses (ARP) »

Getting IP Addresses

Problem:

- A node wakes up for the first time ...
- What is its IP address? What's the IP address of its router? Etc.
- At least Ethernet address is on NIC

Getting IP Addresses (2)

- 1. Manual configuration (old days)
 - Can't be factory set, depends on use
- A protocol for automatically configuring addresses (DHCP) »
 - Shifts burden from users to IT folk

DHCP

- DHCP (Dynamic Host Configuration Protocol), from 1993, widely used
- It leases IP address to nodes
- Provides other parameters too
 - Network prefix
 - Address of local router
 - DNS server, time server, etc.

DHCP Protocol Stack

- DHCP is a client-server application
 - Uses UDP ports 67, 68

DHCP Addressing

Bootstrap issue:

– How does node send a message to DHCP server before it is configured?

Answer:

- Node sends <u>broadcast</u> messages that delivered to all nodes on the network
- Broadcast address is all 1s
- IP (32 bit): 255.255.255.255
- Ethernet (48 bit): ff:ff:ff:ff:ff

DHCP Messages

DHCP Messages (2)

DHCP Messages (3)

- To renew an existing lease, an abbreviated sequence is used:
 - REQUEST, followed by ACK
- Protocol also supports replicated servers for reliability

Sending an IP Packet

Problem:

- A node needs Link layer addresses to send a frame over the local link
- How does it get the destination link address from a destination IP address?

ARP (Address Resolution Protocol)

 Node uses to map a local IP address to its Link layer addresses

ARP Protocol Stack

- ARP sits right on top of link layer
 - No servers, just asks node with target
 IP to identify itself
 - Uses broadcast to reach all nodes

ARP Ethernet

ARP Messages

ARP Messages (2)

Discovery Protocols

- Help nodes find each other
 - There are more of them!
 - E.g., zeroconf, Bonjour
- Often involve broadcast
 - Since nodes aren't introduced
 - Very handy glue

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey