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Where	we	are	in	the	Course	
•  More	fun	in	the	Network	Layer!	

– We’ve	covered	packet	forwarding		
–  Now	we’ll	learn	about	rouDng	

Physical	
Link	

Network	
Transport	
ApplicaDon	



RouDng	versus	Forwarding	
•  Forwarding	is	the	
process	of	sending	a	
packet	on	its	way	

•  RouDng	is	the	process	
of	deciding	in	which	
direcDon	to	send	traffic	
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Forward!	
packet	

Which	way?	

Which	way?	

Which	way?	



Improving	on	the	Spanning	Tree	
•  Spanning	tree	provides	
basic	connecDvity	
–  e.g.,	some	path	BàC	

•  RouDng	uses	all	links	to	
find	“best”	paths	
–  e.g.,	use	BC,	BE,	and	CE	
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A	 B	 C	

D	 E	 F	

A	 B	 C	

D	 E	 F	

Unused	



PerspecDve	on	Bandwidth	AllocaDon	
•  RouDng	allocates	network	bandwidth	adapDng	to	
failures;	other	mechanisms	used	at	other	Dmescales		
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Mechanism Timescale / Adaptation 
Load-sensitive routing Seconds / Traffic hotspots 

Routing Minutes / Equipment failures 

Traffic Engineering Hours / Network load 

Provisioning Months / Network customers 



Delivery	Models	
•  Different	rouDng	used	for	different	delivery	models	
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Unicast	
(§5.2)	

MulDcast	
(§5.2.8)	

Anycast	
(§5.2.9)	

Broadcast	
(§5.2.7)	
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Goals	of	RouDng	Algorithms	
•  We	want	several	properDes	of	any	
rouDng	scheme:	

Property Meaning 
Correctness Finds paths that work 
Efficient paths Uses network bandwidth well 
Fair paths Doesn’t starve any nodes 
Fast convergence Recovers quickly after changes 
Scalability Works well as network grows large 
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Rules	of	RouDng	Algorithms	
•  Decentralized,	distributed	secng	

–  All	nodes	are	alike;	no	controller	
–  Nodes	only	know	what	they	learn	by	
exchanging	messages	with	neighbors		

–  Nodes	operate	concurrently		
–  May	be	node/link/message	failures	

		

Who’s	there?	
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Topics	
•  IPv4,	IPv6,	NATs	and	all	that	

•  Shortest	path	rouDng	
•  Distance	Vector	rouDng	
•  Flooding	
•  Link-state	rouDng	
•  Equal-cost	mulD-path	
•  Inter-domain	rouDng	(BGP)	

This	
Dme	

Last	
Dme	
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Topic	
•  Defining	“best”	paths	with	link	costs	

–  These	are	shortest	path	routes	

Best?	
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G	

H	
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What	are	“Best”	paths	anyhow?	
•  Many	possibiliDes:	

–  Latency,	avoid	circuitous	paths	
–  Bandwidth,	avoid	slow	links	
– Money,	avoid	expensive	links	
–  Hops,	to	reduce	switching	

•  But	only	consider	topology	
–  Ignore	workload,	e.g.,	hotspots	
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Shortest	Paths	
We’ll	approximate	“best”	by	a	cost	
funcDon	that	captures	the	factors	

–  Olen	call	lowest	“shortest”	

1.  Assign	each	link	a	cost	(distance)	
2.  Define	best	path	between	each					

pair	of	nodes	as	the	path	that	has		
the	lowest	total	cost	(or	is	shortest)	

3.  Pick	randomly	to	any	break	Des	
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Shortest	Paths	(2)	
•  Find	the	shortest	path	A	à	E	

	 		
•  All	links	are	bidirecDonal,	with	
equal	costs	in	each	direcDon	
–  Can	extend	model	to	unequal									
costs	if	needed	
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Shortest	Paths	(3)	
•  ABCE	is	a	shortest	path	
•  dist(ABCE)	=	4	+	2	+	1	=	7	

•  This	is	less	than:	
–  dist(ABE)	=	8	
–  dist(ABFE)	=	9	
–  dist(AE)	=	10	
–  dist(ABCDE)	=	10	
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Shortest	Paths	(4)	
•  OpDmality	property:	

– Subpaths	of	shortest	paths																
are	also	shortest	paths		

•  ABCE	is	a	shortest	path	
àSo	are	ABC,	AB,	BCE,	BC,	CE	
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Sink	Trees	
•  Sink	tree	for	a	desDnaDon	is									
the	union	of	all	shortest	paths				
towards	the	desDnaDon	
–  Similarly	source	tree	

•  Find	the	sink	tree	for	E	
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Sink	Trees	(2)	
•  ImplicaDons:	

–  Only	need	to	use	desDnaDon															
to	follow	shortest	paths	

–  Each	node	only	need	to	send															
to	the	next	hop	

•  Forwarding	table	at	a	node	
–  Lists	next	hop	for	each	desDnaDon	
–  RouDng	table	may	know	more	
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Topic	
•  How	to	compute	shortest	paths		
given	the	network	topology	
– With	Dijkstra’s	algorithm	

Source	tree	
for	E	
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Edsger	W.	Dijkstra	(1930-2002)	
•  Famous	computer	scienDst	

–  Programming	languages	
–  Distributed	algorithms	
–  Program	verificaDon	

•  Dijkstra’s	algorithm,	1969	
–  Single-source	shortest	paths,	given	
network	with	non-negaDve	link	costs	

By	Hamilton	Richards,	CC-BY-SA-3.0,	via	Wikimedia	Commons	
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Dijkstra’s	Algorithm	
Algorithm:	
•  Mark	all	nodes	tentaDve,	set	distances	

from	source	to	0	(zero)	for	source,	and	
∞	(infinity)	for	all	other	nodes	

•  While	tentaDve	nodes	remain:	
–  Extract	N,	a	node	with	lowest	distance	
–  Add	link	to	N	to	the	shortest	path	tree	
–  Relax	the	distances	of	neighbors	of		N	by	
lowering	any	berer	distance	esDmates	



Dijkstra’s	Algorithm	(2)	
•  IniDalizaDon	
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Dijkstra’s	Algorithm	(3)	
•  Relax	around	A	
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Dijkstra’s	Algorithm	(4)	
•  Relax	around	B	
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Dijkstra’s	Algorithm	(5)	
•  Relax	around	C	
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Dijkstra’s	Algorithm	(6)	
•  Relax	around	G	(say)	
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Dijkstra’s	Algorithm	(7)	
•  Relax	around	F	(say)	
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Dijkstra’s	Algorithm	(8)	
•  Relax	around	E	
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Dijkstra’s	Algorithm	(9)	
•  Relax	around	D	
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Dijkstra’s	Algorithm	(10)	
•  Finally,	H	…	done	
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Dijkstra	Comments	
•  Finds	shortest	paths	in	order	of	

increasing	distance	from	source	
–  Leverages	opDmality	property	

•  RunDme	depends	on	efficiency	of	
extracDng	min-cost	node	
–  Superlinear	in	network	size	(grows	fast)	

•  Gives	complete	source/sink	tree	
–  More	than	needed	for	forwarding!	
–  But	requires	complete	topology		
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Topic	
•  How	to	compute	shortest	paths		in	
a	distributed	network	
–  The	Distance	Vector	(DV)	approach	

Here’s	my	vector!	 Here’s	mine	
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Distance	Vector	RouDng	
•  Simple,	early	rouDng	approach	

–  Used	in	ARPANET,	and	RIP	

•  One	of	two	main	approaches	to	rouDng	
–  Distributed	version	of	Bellman-Ford	
–  Works,	but	very	slow	convergence						
aler	some	failures		

•  Link-state	algorithms	are	now					
typically	used	in	pracDce	
–  More	involved,	berer	behavior	
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Distance	Vector	Secng	
Each	node	computes	its	forwarding	table												
in	a	distributed	secng:	

1.  Nodes	know	only	the	cost	to	their	
neighbors;	not	the	topology	

2.  Nodes	can	talk	only	to	their	neighbors		
using	messages	

3.  All	nodes	run	the	same	algorithm	
concurrently	

4.  Nodes	and	links	may	fail,	messages										
may	be	lost	
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Distance	Vector	Algorithm	
Each	node	maintains	a	vector	of	distances		
(and	next	hops)	to	all	desDnaDons	

	

1.  IniDalize	vector	with	0	(zero)	cost	to	
self,	∞	(infinity)	to	other	desDnaDons	

2.  Periodically	send	vector	to	neighbors	
3.  Update	vector	for	each	desDnaDon	by	

selecDng	the	shortest	distance	heard,	
aler	adding	cost	of	neighbor	link	
–  Use	the	best	neighbor	for	forwarding	



Distance	Vector	(2)	
•  Consider	from	the	point	of	view	of	node	A	

–  Can	only	talk	to	nodes	B	and	E	
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Distance	Vector	(3)	
•  First	exchange	with	B,	E;	learn	best	1-hop	routes	
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Distance	Vector	(4)	
•  Second	exchange;	learn	best	2-hop	routes	
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Distance	Vector	(4)	
•  Third	exchange;	learn	best	3-hop	routes	
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Distance	Vector	(5)	
•  Subsequent	exchanges;	converged	
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Distance	Vector	Dynamics	
•  Adding	routes:	

–  News	travels	one	hop	per	exchange	
•  Removing	routes	

– When	a	node	fails,	no	more	
exchanges,	other	nodes	forget	

•  But	parDDons	(unreachable	nodes			
in	divided	network)	are	a	problem	
–  “Count	to	infinity”	scenario	



DV	Dynamics	(2)	
•  Good	news	travels	quickly,	bad	news	slowly	(inferred)	
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“Count	to	infinity”	scenario	

Desired	convergence	

X	
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DV	Dynamics	(3)	
•  Various	heurisDcs	to	address	

–  e.g.,	“Split	horizon,	poison	
reverse”			(Don’t	send	route	back	to	
where												you	learned	it	from.)	

•  But	none	are	very	effecDve	
–  Link	state	now	favored	in	pracDce	
–  Except	when	very	resource-limited	
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Topic	
•  How	to	broadcast	a	message	to	all	
nodes	in	the	network	with	flooding	
–  Simple	mechanism,	but	inefficient	

Flood!	
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Flooding	
•  Rule	used	at	each	node:	

–  Sends	an	incoming	message	on	to					
all	other	neighbors	

–  Remember	the	message	so	that	it								
is	only	flood	once		

•  Inefficient	because	one	node	may	
receive	mulDple	copies	of	message	



Flooding	(2)	
•  Consider	a	flood	from	A;	first	reaches	B	via	AB,	E	via	AE	
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Flooding	(3)	
•  Next	B	floods	BC,	BE,	BF,	BG,	and	E	floods	EB,	EC,	ED,	EF	
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Flooding	(4)	
•  C	floods	CD,	CH;	D	floods	DC;	F	floods	FG;	G	floods	GF	
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Flooding	(5)	
•  H	has	no-one	to	flood	…	and	we’re	done	
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Flooding	Details	
•  Remember	message	(to	stop	flood)	
using	source	and	sequence	number	
–  So	next	message	(with	higher	
sequence	number)	will	go	through	

•  To	make	flooding	reliable,	use	ARQ	
–  So	receiver	acknowledges,	and			
sender	resends	if	needed	
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Topic	
•  How	to	compute	shortest	paths		in	
a	distributed	network	
–  The	Link-State	(LS)	approach	

Flood!	 …	then	compute	



CSE	461	University	of	Washington	 50	

Link-State	RouDng	
•  One	of	two	approaches	to	rouDng	

–  Trades	more	computaDon	than	
distance	vector	for	berer	dynamics		

•  Widely	used	in	pracDce	
–  Used	in	Internet/ARPANET	from	1979	
– Modern	networks	use	OSPF	and	IS-IS	
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Link-State	Secng	
Nodes	compute	their	forwarding	table	in	the	
same	distributed	secng	as	for	distance	vector:	

1.  Nodes	know	only	the	cost	to	their	
neighbors;	not	the	topology	

2.  Nodes	can	talk	only	to	their	neighbors		
using	messages	

3.  All	nodes	run	the	same	algorithm	
concurrently	

4.  Nodes/links	may	fail,	messages	may	be	lost	
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Link-State	Algorithm	
Proceeds	in	two	phases:	
1.  Nodes	flood	topology	in	the	form	

of	link	state	packets	
–  Each	node	learns	full	topology	

2.  Each	node	computes	its	own	
forwarding	table	

–  By	running	Dijkstra	(or	equivalent)	
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Phase	1:	Topology	DisseminaDon	
•  Each	node	floods	link	state	packet	
(LSP)	that	describes	their	porDon		
of	the	topology	
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Phase	2:	Route	ComputaDon	
•  Each	node	has	full	topology	

–  By	combining	all	LSPs	

•  Each	node	simply	runs	Dijkstra	
–  Some	replicated	computaDon,	but						
finds	required	routes	directly	

–  Compile	forwarding	table	from	sink/
source	tree	

–  That’s	it	folks!	



Forwarding	Table	
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To Next 
A C 
B C 
C C 
D D 
E -- 
F F 
G F 
H C A	 B	

C	

D	

E	

F	

G	

H	

2	

1	

10	

2	

2	
4	

2	
4	

4	

3	
3	

3	

Source	Tree	for	E	(from	Dijkstra)	 E’s	Forwarding	Table	



Handling	Changes	
•  On	change,	flood	updated	LSPs,	and	re-compute	routes	

–  E.g.,	nodes	adjacent	to	failed	link	or	node	iniDate	

CSE	461	University	of	Washington	 56	

A	 B	

C	

D	

E	

F	

G	

H	

2	

1	

10	

2	

2	
4	

2	
4	

4	

3	
3	

3	

XXXX	Seq. # 
A 4 
C 2 
E 4 
F 3 
G ∞	

B’s	LSP	
Seq. # 

B 3 
E 2 
G ∞	

F’s	LSP	 Failure!	
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Handling	Changes	(2)	
•  Link	failure	

–  Both	nodes	noDce,	send	updated	LSPs	
–  Link	is	removed	from	topology	

•  Node	failure	
–  All	neighbors	noDce	a	link	has	failed	
–  Failed	node	can’t	update	its	own	LSP	
–  But	it	is	OK:	all	links	to	node	removed	
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Handling	Changes	(3)	
•  AddiDon	of	a	link	or	node	

–  Add	LSP	of	new	node	to	topology	
–  Old	LSPs	are	updated	with	new	link	

•  AddiDons	are	the	easy	case	…	
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Link-State	ComplicaDons	
•  Things	that	can	go	wrong:	

–  Seq.	number	reaches	max,	or	is	corrupted	
–  Node	crashes	and	loses	seq.	number	
–  Network	parDDons	then	heals	

•  Strategy:	
–  Include	age	on	LSPs	and	forget	old	
informaDon	that	is	not	refreshed	

•  Much	of	the	complexity	is	due	to	
handling	corner	cases	(as	usual!)	



DV/LS	Comparison	
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Goal Distance Vector Link-State 

Correctness Distributed Bellman-Ford Replicated Dijkstra 

Efficient paths Approx. with shortest paths Approx. with shortest paths 

Fair paths Approx. with shortest paths Approx. with shortest paths 

Fast convergence Slow – many exchanges Fast – flood and compute 

Scalability Excellent – storage/compute Moderate – storage/compute 


