
David Wetherall (djw@uw.edu)

Professor of Computer Science & Engineering

Computer Networks

The Socket API

(§1.3.4, 6.1.2-6.1.4)

Computer Networks 2

Network-Application Interface
• Defines how apps use the network

– Lets apps talk to each other via hosts;
hides the details of the network

host

appapp

host

Computer Networks 3

Motivating Application
• Simple client-server setup

request

reply

Computer Networks 4

Motivating Application (2)

• Simple client-server setup
– Client app sends a request to server app
– Server app returns a (longer) reply

• This is the basis for many apps!
– File transfer: send name, get file (§6.1.4)
– Web browsing: send URL, get page
– Echo: send message, get it back

• Let’s see how to write this app …

Computer Networks 5

Socket API
• Simple abstraction to use the network

– The network service API used to write all
Internet applications

– Part of all major OSes and languages;
originally Berkeley (Unix) ~1983

• Supports two kinds of network services
– Streams: reliably send a stream of bytes »
– Datagrams: unreliably send separate

messages. (Ignore for now.)

Computer Networks 6

Socket API (2)

• Sockets let apps attach to the
local network at different ports

Socket,
Port #1

Socket,
Port #2

Socket API (3)

Computer Networks 7

Primitive Meaning

SOCKET Create a new communication endpoint

BIND Associate a local address with a socket

LISTEN Announce willingness to accept connections; give queue size

ACCEPT Passively establish an incoming connection

CONNECT Actively attempt to establish a connection

SEND Send some data over the connection

RECEIVE Receive some data from the connection

CLOSE Release the connection

Computer Networks 8

Using Sockets
Client (host 1) Server (host 2)Time

Computer Networks 9

Using Sockets (2)
Client (host 1) Server (host 2)Time

request

reply

disconnect

1 1

2

3

44

connect

Computer Networks 10

Using Sockets (3)
Client (host 1) Server (host 2)Time

5: connect*

1: socket 2: bind
1: socket

3: listen

9: send

6: recv*

4: accept*

7: send

8: recv*

10: close 10: close

request

reply

disconnect

connect

*= call blocks

Computer Networks 11

Client Program (outline)

socket() // make socket

getaddrinfo() // server and port name

// www.example.com:80

connect() // connect to server [block]

…

send() // send request

recv() // await reply [block]

… // do something with data!

close() // done, disconnect

Computer Networks 12

Server Program (outline)
socket() // make socket

getaddrinfo() // for port on this host

bind() // associate port with socket

listen() // prepare to accept connections

accept() // wait for a connection [block]

…

recv() // wait for request

…

send() // send the reply

close() // eventually disconnect

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011.
Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey

Computer Networks 13

