BGP Review

Ming Liu

Background

- The internet is organized as autonomous systems (AS)
\checkmark A corporation's internal network
- Hierarchically aggregate routing information in a large internet

The interdomain routing problem

- Each AS determines its own routing policies
\checkmark One AS only wants to send and receive packets from the Internet
\checkmark One AS can carry transit traffic for others if you pay this service
- Political considerations
\checkmark Never send traffic from the Pentagon on a route through Iraq
- Security considerations
\checkmark Traffic starting or ending at Apple should not transit Google
- Economic considerations
\checkmark Use cheaper service

Routing policy example

- A routing policy decides what traffic can flow over which of the links between ASes
- Provider, Customer, Peer

Terminology

- Autonomous system traffic
\checkmark Local traffic: originates at or terminates on nodes within an AS
\checkmark Transit traffic: passes through ASes
- Three types of AS
\checkmark Stub AS: a single connection to one other AS, local traffic
\checkmark Multihomed AS: an AS that has connections to more than one other AS, local traffic
\checkmark Transit AS: an AS that has connection to more than one other AS, carry both transit and local traffic

Basics of BGP

- Two routers:
\checkmark Border routers \rightarrow through which packets enter and leave the AS
\checkmark BGP speaker \rightarrow advertisements, usually the same as border routers
- Path-vector protocol
\checkmark Next hop router
\checkmark AS Path: a list of autonomous systems to reach a particular network
\checkmark Routers communicate with each other by establishing TCP connections

A BGP route advertisement example

- Each router that sends a route outside the AS prepends its own AS number to the route

Loop detection

- Unique AS number
\checkmark BGP current version: AS number is 16 bits

Route selection

- Routes via peered networks are chosen in preference to routes via transit providers
- Free
- Shorter AS paths are better
- Prefer the route that has the lowest cost within the ISP
\checkmark See previous example

One example

- Given the following network,
\checkmark Consider a network with 7 ASes.
\checkmark AS1 is the provider for AS2 and AS3
\checkmark AS2 is the provider for AS4 and AS5
\checkmark AS3 is the provider for AS6 and AS7
\checkmark AS2 and AS3 are peers
- Questions ?

