BGP Review

Ming Liu

Background

- The internet is organized as autonomous systems (AS)
 - \checkmark A corporation's internal network

• Hierarchically aggregate routing information in a large internet

The interdomain routing problem

- Each AS determines its own routing policies
 - \checkmark One AS only wants to send and receive packets from the Internet
 - \checkmark One AS can carry transit traffic for others if you pay this service
- Political considerations
 - \checkmark Never send traffic from the Pentagon on a route through Iraq
- Security considerations
 - \checkmark Traffic starting or ending at Apple should not transit Google
- Economic considerations
 - ✓ Use cheaper service

Routing policy example

- A routing policy decides what traffic can flow over which of the links between ASes
- Provider, Customer, Peer

Terminology

- Autonomous system traffic
 - \checkmark Local traffic: originates at or terminates on nodes within an AS
 - ✓ Transit traffic: passes through ASes
- Three types of AS
 - ✓ Stub AS: a single connection to one other AS, local traffic
 - ✓ Multihomed AS: an AS that has connections to more than one other AS, local traffic
 - ✓ Transit AS: an AS that has connection to more than one other AS, carry both transit and local traffic

Basics of BGP

- Two routers:
 - \checkmark Border routers \rightarrow through which packets enter and leave the AS
 - \checkmark BGP speaker \rightarrow advertisements, usually the same as border routers

Path-vector protocol

- ✓ Next hop router
- \checkmark AS Path: a list of autonomous systems to reach a particular network
- \checkmark Routers communicate with each other by establishing TCP connections

A BGP route advertisement example

• Each router that sends a route outside the AS prepends its own AS number to the route

Loop detection

- Unique AS number
 - \checkmark BGP current version: AS number is 16 bits

Route selection

- Routes via peered networks are chosen in preference to routes via transit providers
 - Free
- Shorter AS paths are better
- Prefer the route that has the lowest cost within the ISP
 - ✓ See previous example

One example

- Given the following network,
 - \checkmark Consider a network with 7 ASes.
 - \checkmark AS1 is the provider for AS2 and AS3
 - \checkmark AS2 is the provider for AS4 and AS5
 - \checkmark AS3 is the provider for AS6 and AS7
 - ✓ AS2 and AS3 are peers
- Questions ?