Section 2 — Link Layer

CSE 461 — Autumn 2015

Panji Wisesa



Byte Count

* Add a length to the start if the frame
* No protection against any errors



Byte Stuffing

* Have a special flag byte value that means start/end of frame

FLAG| Header Payload field Trailer |FLAG

* Replace the flag inside the frame with an escape code

Original bytes After stuffing
A FLAG B —_— A ESC | |[FLAG B
A ESC B —_— A ESC | | ESC B

A ESC | |FLAG B —_— | A ESC | |ESC | | ESC ‘FLAG B

A ESC | [ ESC B — | A ESC | |ESC | | ESC ‘ ESC B




Bit Stuffing

* Like byte stuffing but in the bit level

e Use six consecutive 1s as the flag
* On transmit, after five 1s in the data, inserta O
* On receive, a 0 after five 1s is deleted

Databits 011011111111111111110010

Transmitted bits 011011111011111011111010010

with stuffing AN T et

Stuffed bits



Error Detection and Correction

 Done with check bits, calculated from the data to be transmitted

* More check bits usually means more errors can be detected and
calculated

 However, it’s a balance between the overhead of check bits and the

reliability from those check bits

Sender

Data bits Check bits

D

R=fn(D)

o

Receiver

Data bits Check bits

D

R.l

R=fn(D)

N _p
PN




Why Check Bits Work

e The combination of the data and check bits can be called a codeword

* The check bit works because there’s a lot more codewords than valid
ones (the check bits matches the check bits calculated from the data)

* So it’s very unlikely that errors can transform a valid codeword into a
different valid codeword

All —7 )
codewords

Correct —+—0

codewords - Y,




Hamming Distance

* Distance is the number of bit flips needed to change D1 to D2

* Hamming distance of a code is the minimum distance between any
pair of valid codewords

* For a code of distance d+1, up to d errors will always be detected

* For a code of distance 2d+1, up to d errors can always be corrected by
mapping to the closest codeword



Error Detection

e Standard functions to create the check bits:
 Parity bit, 1 check bit from the sum of all data bits, Hamming distance of 2

e Checksum, 16 check bits from 16-bit ones complement arithmetic, Homming
distance of 2, good for Burst Errors

* CRC (Cyclic Redundancy Check), k check bits from n data bits such that n+k
bits are evenly divisible by a generator C, Hamming distance of 4, good for
Burst Errors up to k bits



Checksum

Sending:
1. Arrange data in 16-bit words
2. Put zero in checksum position, add

3. Add any carryover back to get 16 bits

4. Negate (complement) to get sum

0001
£203
f4£5
fef7
+(0000)

vingo: 0001
Recelving: £203
1.Arrange data in 16-bit words feso
2.Checksum will be non-zero, add + 2204
2f£££d

%Lffd

3.Add any carryover back to get 16 bits + 5
fEEE

4.Negate the result and check itis O 04;)00



CRC

1 0 = Quotiant (thrown awery)

Frame with four zeros appended

'
llllllllllllllllllllllllllllllllllllll ‘00
- [ - Benaneemenene D =l O
Ll ~ e b T e el b O -0 0Q
ol ~ BT T T B LR S RS el
b l.o-ll'lolll."O"oooooo
D ™ rcncncnsmnnncnee ™ O ™ D= Ol Ol -
QD™ sarssncrsnap = QIO QDI 0O|™ ™
0'.'..0" 10'0‘0"
=i = 0010010000
~IQv =0 QIO QICO
-0 CIC SO O
COI0 00
Ilo‘l‘
-
S—
—
Q
=
- .. -
Ko 8T -d
_ — = x =
= 0 + o <
Q i A D "
O T X -
2o g I, x
89 <© X%
i O

Frame with four zeros appended
: :

10010~

1 010 11

Transmitted frame:



Error Correction

 Harder than detection, can correct only d errors in codewords with
Hamming distance >= 2d +1

* In this class we will mostly talk about Hamming Code for error
correction



Hamming Code

* Allows the creation of a codeword with a Haming distance of 3, for
every n data bits there must be k check bits where (n =22k -k - 1)

* The check bits are located in positions that are powers of 2, so 1 =
270, 2 =271, 4 = 272, etc.

* Check bits in position p is parity for positions with a p term in their
values



Hamming Code Check Bits Coverage

Data = 4 bits, Check bits = 3 bits, Codeword = 7 bits

Check bits are located at:
* 1 =270, which means they cover 3,5, & 7
e 2 =271, which means they cover 3,6, & 7
e 4 =272, which means they cover 5, 6, & 7

What the check bits cover are determined by whether the
location contains them in their term or in other words, the
location in binary has a 1 at the check bit’s power to 2.

The value of the check bits themselves are the summation
of the bits at those positions.

N o o B WN R

001
010
011
100
101
110
111



Hamming Code Example

To decode:
—>
— Recompute check bits (with parity 0100111

sum including the check bit)
P1=0+0+1+1 =0, py,=1+0+1+1=1,

— Arrange as a binary number P4= O+1+1+1 =1

— Value (syndrome) tells error position
Syndrome =11 0, flip position 6

Data=0101 (correct after flip!)

— Value of zero means no error
— Otherwise, flip bit to correct



Error Detection vs. Correction

e Usually error correction is used when errors are expected and there’s
no time to retransmit

* While error detection is more efficient when errors are not expected
or when the errors are really large so no hope of correction anyway

* But to choose one or the other still depends on the amount of data
being sent and the rate of error



