CSE 461 Midterm Review

Ming Liu Panji Wisesa

Slides borrowed from last year

Physicallayer

Latency

Transmission delay: time to put message on the wire. T_delay = Message(bits) / Rate(bits/sec)

Propagation delay: time for bits to propagate across wire. P_delay = Length(m) / Speed of signal(m/sec)

Latency

Assume 100-Mbps bandwidth, two store-andforward switch, packet size of 100000 bits, each link introduce a propagation delay of 5ms, calculate latency.

BD product

A measurement of the amount of data in flight.

BD = Rate * Delay

00100010011

Shannon Capacity

Maximum rate information can be transmitted over a channel of a specified bandwidth in the presence of noise.

 $C = B \log(2, 1 + S/(BN)) bits/sec$

Link layer

Framing methods

Byte count Byte stuffing Bit stuffing

Byte stuffing

Have a special flat byte value
Replace the flag inside the frame with an escape code
Need to escape the escape code too

Hamming distance

 Hamming distance of a code is the minimum distance between any pair of valid codewords.

Hamming distance

Error detection: For a code of distance d+1, up to d errors will always be detected.

Error correction: For a code of distance 2d+1, up to d errors will always be corrected by mapping to the closest codeword.

Hamming distance

Assume a code has hamming distance 5

How many errors it can detect? How many errors it can correct?

2D parity

Internet checksum - sender

Add using one's complement

Negate to get sum

Internet checksum - receiver

Add using one's complement

1 1 1 1

Negate and check it is 0 0000

Internet checksum

Assume 4-bit works, is the following frame received correct?

0010, 1101, 0111, 0010, 0110

Cyclic Redundancy Check

Sender:

Extend n data bits with k zeros
 Divide by generator value C
 Keep remainder, ignore quotient
 Adjust k check bits by remainder

Receiver: Divide and check for zero reminder

Multiplexing

Time Division Multplexing (TDM) User take turns on a fixed schedule

Frequency Division Multplexing (FDM) Put different users on different bands

Exponential back-off

 Whenever a collision is detected, wait a random number between 0 and 2ⁿ - 1 inclusive before sending again.

• n is usually 10 at max

MACA

Protocol:

- 1. Sender transmits RTS (Ready to send)
- 2. Receiver replies with CTS (Clear to send)
- Send transmits frame while nodes hearing CTS stays silent

What is network Hub?

Works at Physical layer

Hub

- Replicates data on all interface
- Cheap and simple, waste bandwidth

What is network Switch/Bridge?

Works at Link layer

Learns Mac address

Forwards packet using switch table

Connects devices together

Forwarding loops

Spanning tree Algorithm

Outline:

- 1. Elect a root node of the tree. (Switch with lowest address)
- Grow tree as shortest distances from root
 Turn off port for forwarding if they aren't on the spanning tree

Network layer

What is network Router?

Works at Network layer

 Gateway between local network/private network to Internet

Carríes functions like wifi transmission, NAT,
 DHCP and routing

Let's talk about DHCP

Protocol:

DHCP Discover
 DHCP offer
 DHCP request
 DHCP ACK

A 192.168.1.2

B ???

Forwarding methods

Datagram model
Vírtual círcuít model

Routing methods

Díjkstra's Algorithm

 Dístance vector (Dístríbuted version of Bellman Ford)

Línk-State Algorithm

Longest prefix matching 192.24.63.255

Prefix	Next hop
192.24.0.0/18	С
192.24.12.0/22	В

192.24.15.255

 \mathbf{C}

B

192.24.12.0

(

192.24.0.0

Good luck!