
CSE	461	University	of	Washington	 1	

Conges7on	Collapse	in	the	1980s	
•  Early	TCP	used	a	fixed	size	sliding	
window	(e.g.,	8	packets)	
–  Ini7ally	fine	for	reliability	

•  But	something	strange	happened		
as	the	ARPANET	grew	
–  Links	stayed	busy	but	transfer	rates		
fell	by	orders	of	magnitude!		



CSE	461	University	of	Washington	 2	

Conges7on	Collapse	(2)	
•  Queues	became	full,	retransmissions	

clogged	the	network,	and	goodput	fell	

Conges7on	
collapse	



CSE	461	University	of	Washington	 3	

TCP	Tahoe/Reno	
•  Avoid	conges7on	collapse	without	

changing	routers	(or	even	receivers)	

•  Idea	is	to	fix	7meouts	and	introduce	a	
conges7on	window	(cwnd)	over	the	
sliding	window	to	limit	queues/loss	

•  TCP	Tahoe/Reno	implements	AIMD	by	
adap7ng	cwnd	using	packet	loss	as	the	
network	feedback	signal	



CSE	461	University	of	Washington	 4	

TCP	Tahoe/Reno	(2)	
•  TCP	behaviors	we	will	study:	

–  ACK	clocking	
–  Adap7ve	7meout	(mean	and	variance)	
–  Slow-start	
–  Fast	Retransmission	
–  Fast	Recovery	

•  Together,	they	implement	AIMD	



CSE	461	University	of	Washington	 5	

Ack	Clocking	
•  The	self-clocking	behavior	of	sliding	
windows,	and	how	it	is	used	by	TCP	
–  The	“ACK	clock”	

Tick	Tock!	



CSE	461	University	of	Washington	 6	

Sliding	Window	ACK	Clock	
•  Each	in-order	ACK	advances	the	
sliding	window	and	lets	a	new	
segment	enter	the	network	
–  ACKs	“clock”	data	segments	

Ack	1		2		3		4		5		6		7		8		9	10	

20	19	18	17	16	15	14	13	12	11	Data	



Benefit	of	ACK	Clocking	
•  Consider	what	happens	when	sender	injects	a	burst	of	
segments	into	the	network	

CSE	461	University	of	Washington	 7	

Fast	link	 Fast	link	Slow	(bodleneck)	link	

Queue	



Benefit	of	ACK	Clocking	(2)	
•  Segments	are	buffered	and	spread	out	on	slow	link	

CSE	461	University	of	Washington	 8	

Fast	link	 Fast	link	Slow	(bodleneck)	link	

Segments		
“spread	out”	



Benefit	of	ACK	Clocking	(3)	
•  ACKs	maintain	the	spread	back	to	the	original	sender	

CSE	461	University	of	Washington	 9	

Slow	link	
Acks	maintain	spread	



Benefit	of	ACK	Clocking	(4)	
•  Sender	clocks	new	segments	with	the	spread	

–  Now	sending	at	the	bodleneck	link	without	queuing!	

CSE	461	University	of	Washington	 10	

Slow	link	

Segments	spread	 Queue	no	longer	builds	



CSE	461	University	of	Washington	 11	

Benefit	of	ACK	Clocking	(4)	
•  Helps	the	network	run	with	low			

levels	of	loss	and	delay!	

•  The	network	has	smoothed	out								
the	burst	of	data	segments	

•  ACK	clock	transfers	this	smooth				
7ming	back	to	the	sender	

•  Subsequent	data	segments	are									
not	sent	in	bursts	so	do	not										
queue	up	in	the	network	



CSE	461	University	of	Washington	 12	

TCP	Uses	ACK	Clocking	
•  TCP	uses	a	sliding	window	because				

of	the	value	of	ACK	clocking	

•  Sliding	window	controls	how	many	
segments	are	inside	the	network	
–  Called	the	conges7on	window,	or	cwnd	
–  Rate	is	roughly	cwnd/RTT	

•  TCP	only	sends	small	bursts	of	
segments	to	let	the	network	keep				
the	traffic	smooth	



CSE	461	University	of	Washington	 13	

Slow	Start	
•  How	TCP	implements	AIMD,	part	1	

–  “Slow	start”	is	a	component	of	the	AI	
por7on	of	AIMD		

Slow-start	



CSE	461	University	of	Washington	 14	

TCP	Startup	Problem	
•  We	want	to	quickly	near	the	right	
rate,	cwndIDEAL,	but	it	varies	greatly	
–  Fixed	sliding	window	doesn’t	adapt	
and	is	rough	on	the	network	(loss!)		

–  AI	with	small	bursts	adapts	cwnd	
gently	to	the	network,	but	might	take	
a	long	7me	to	become	efficient	



CSE	461	University	of	Washington	 15	

Slow-Start	Solu7on	
•  Start	by	doubling	cwnd	every	RTT	

–  Exponen7al	growth	(1,	2,	4,	8,	16,	…)	
–  Start	slow,	quickly	reach	large	values	

AI	

Fixed	

Time	W
in
do

w
	(c
w
nd

)	

Slow-start	



CSE	461	University	of	Washington	 16	

Slow-Start	Solu7on	(2)	
•  Eventually	packet	loss	will	occur	
when	the	network	is	congested	
–  Loss	7meout	tells	us	cwnd	is	too	large	
–  Next	7me,	switch	to	AI	beforehand	
–  Slowly	adapt	cwnd	near	right	value	

•  In	terms	of	cwnd:	
–  Expect	loss	for	cwndC	≈	2BD+queue	
–  Use	ssthresh	=	cwndC/2	to	switch	to	AI	



CSE	461	University	of	Washington	 17	

Slow-Start	Solu7on	(3)	
•  Combined	behavior,	amer	first	7me	

– Most	7me	spend	near	right	value	

AI	

Fixed	

Time	

Window	

ssthresh	

cwndC	

cwndIDEAL	
AI	phase	

Slow-start	



Slow-Start	(Doubling)	Timeline	

CSE	461	University	of	Washington	 18	

Increment	cwnd	
by	1	packet	for	
each	ACK	



Addi7ve	Increase	Timeline	

CSE	461	University	of	Washington	 19	

Increment	cwnd	by	
1	packet	every	cwnd	
ACKs	(or	1	RTT)	



CSE	461	University	of	Washington	 20	

TCP	Tahoe	(Implementa7on)	
•  Ini7al	slow-start	(doubling)	phase	

–  Start	with	cwnd	=	1	(or	small	value)	
–  cwnd	+=	1	packet	per	ACK	

•  Later	Addi7ve	Increase	phase	
–  cwnd	+=	1/cwnd	packets	per	ACK	
–  Roughly	adds	1	packet	per	RTT	

•  Switching	threshold	(ini7ally	infinity)	
–  Switch	to	AI	when	cwnd	>	ssthresh	
–  Set	ssthresh	=	cwnd/2	amer	loss	
–  Begin	with	slow-start	amer	7meout	



CSE	461	University	of	Washington	 21	

Timeout	Misfortunes	
•  Why	do	a	slow-start	amer	7meout?	

–  Instead	of	MD	cwnd	(for	AIMD)	

•  Timeouts	are	sufficiently	long	that	
the	ACK	clock	will	have	run	down	
–  Slow-start	ramps	up	the	ACK	clock	

•  We	need	to	detect	loss	before	a	
7meout	to	get	to	full	AIMD	
–  Done	in	TCP	Reno	(next	7me)	



CSE	461	University	of	Washington	 22	

Inferring	Loss	from	ACKs	
•  TCP	uses	a	cumula7ve	ACK	

–  Carries	highest	in-order	seq.	number	
–  Normally	a	steady	advance	

•  Duplicate	ACKs	give	us	hints	about	
what	data	hasn’t	arrived	
–  Tell	us	some	new	data	did	arrive,					
but	it	was	not	next	segment	

–  Thus	the	next	segment	may	be	lost	



CSE	461	University	of	Washington	 23	

Fast	Retransmit	
•  Treat	three	duplicate	ACKs	as	a	loss		

–  Retransmit	next	expected	segment	
–  Some	repe77on	allows	for	reordering,	
but	s7ll	detects	loss	quickly	

Ack	1		2		3		4		5		5		5		5		5		5	



Fast	Retransmit	(2)	

CSE	461	University	of	Washington	 24	

Ack	10	
Ack	11	
Ack	12	
Ack	13	

.	.	.		

Ack	13	

Ack	13	
Ack	13	

Data	14	.	.	.		
Ack	13	

Ack	20	
.	.	.		.	.	.		

Data	20	
Third	duplicate	
ACK,	so	send	14	 Retransmission	fills	

in	the	hole	at	14	
ACK	jumps	amer	
loss	is	repaired	

.	.	.		.	.	.		

Data	14	was	
lost	earlier,	but	
got	15	to	20	



CSE	461	University	of	Washington	 25	

Fast	Retransmit	(3)	
•  It	can	repair	single	segment	loss	

quickly,	typically	before	a	7meout	

•  However,	we	have	quiet	7me	at	the	
sender/receiver	while	wai7ng	for	the	
ACK	to	jump	

•  And	we	s7ll	need	to	MD	cwnd	…	
		



CSE	461	University	of	Washington	 26	

Fast	Recovery	
•  First	fast	retransmit,	and	MD	cwnd	
•  Then	pretend	further	duplicate	
ACKs	are	the	expected	ACKs	
–  Lets	new	segments	be	sent	for	ACKs		
–  Reconcile	views	when	the	ACK	jumps	

Ack	1		2		3		4		5		5		5		5		5		5	



Fast	Recovery	(2)	

CSE	461	University	of	Washington	 27	

Ack	12	
Ack	13	
Ack	13	

Ack	13	
Ack	13	

Data	14	Ack	13	

Ack	20	
.	.	.		.	.	.		

Data	20	
Third	duplicate	
ACK,	so	send	14	

Data	14	was	
lost	earlier,	but	
got	15	to	20	

Retransmission	fills	
in	the	hole	at	14	

Set	ssthresh,	
cwnd	=		cwnd/2		

Data	21	
Data	22	

More	ACKs	advance	
window;	may	send	

segments	before	jump	

Ack	13	

Exit	Fast	Recovery	



CSE	461	University	of	Washington	 28	

Fast	Recovery	(3)	
•  With	fast	retransmit,	it	repairs	a	single	

segment	loss	quickly	and	keeps	the	ACK	
clock	running	

•  This	allows	us	to	realize	AIMD	
–  No	7meouts	or	slow-start	amer	loss,	just	
con7nue	with	a	smaller	cwnd	

•  TCP	Reno	combines	slow-start,	fast	
retransmit	and	fast	recovery	
–  Mul7plica7ve	Decrease	is	½		



TCP	Reno	

CSE	461	University	of	Washington	 29	

MD	of	½	,	no	slow-start	

ACK	clock	
running	

TCP	sawtooth	



CSE	461	University	of	Washington	 30	

TCP	Reno,	NewReno,	and	SACK	
•  Reno	can	repair	one	loss	per	RTT	

–  Mul7ple	losses	cause	a	7meout	

•  NewReno	further	refines	ACK	heuris7cs	
–  Repairs	mul7ple	losses	without	7meout	

•  SACK	is	a	beder	idea	
–  Receiver	sends	ACK	ranges	so	sender				
can	retransmit	without	guesswork	



CSE	461	University	of	Washington	 31	

Topic	
•  How	routers	can	help	hosts	to		
avoid	conges7on	
–  Explicit	Conges7on	No7fica7on	

!!	



CSE	461	University	of	Washington	 32	

Conges7on	Avoidance	vs.	Control	
•  Classic	TCP	drives	the	network	into	
conges7on	and	then	recovers	
–  Needs	to	see	loss	to	slow	down	

•  Would	be	beder	to	use	the	network	
but	avoid	conges7on	altogether!	
–  Reduces	loss	and	delay	

•  But	how	can	we	do	this?	



Feedback	Signals	
•  Delay	and	router	signals	can	let	us	avoid	conges7on	

CSE	461	University	of	Washington	 33	

Signal Example Protocol Pros / Cons 
Packet loss Classic TCP 

Cubic TCP (Linux) 
Hard to get wrong 

Hear about congestion late 
Packet delay Compound TCP 

(Windows) 
Hear about congestion early 

Need to infer congestion 
Router 

indication 
TCPs with Explicit 

Congestion Notification 
Hear about congestion early 

Require router support 



ECN	(Explicit	Conges7on	No7fica7on)	
•  Router	detects	the	onset	of	conges7on	via	its	queue	

– When	congested,	it	marks	affected	packets	(IP	header)	

CSE	461	University	of	Washington	 34	



ECN	(2)	
•  Marked	packets	arrive	at	receiver;	treated	as	loss	

–  TCP	receiver	reliably	informs	TCP	sender	of	the	conges7on	

CSE	461	University	of	Washington	 35	



CSE	461	University	of	Washington	 36	

ECN	(3)	
•  Advantages:	

–  Routers	deliver	clear	signal	to	hosts	
–  Conges7on	is	detected	early,	no	loss	
–  No	extra	packets	need	to	be	sent	

•  Disadvantages:	
–  Routers	and	hosts	must	be	upgraded	


