
CSE 461 University of Washington 1

Topic
• The Physical layer gives us a stream

of bits. How do we interpret it as a
sequence of frames?

…10110 …

Um?

CSE 461 University of Washington 2

Framing Methods
• We’ll look at:
– Byte count (motivation)»
– Byte stuffing »
– Bit stuffing »

• In practice, the physical layer often
helps to identify frame boundaries
– E.g., Ethernet, 802.11

CSE 461 University of Washington 3

Byte Count

• First try:
– Let’s start each frame with a

length field!
– It’s simple, and hopefully good

enough …

Byte Count (2)

• How well do you think it works?

CSE 461 University of Washington 4

Byte Count (3)
• Difficult to re-synchronize after framing error
– Want a way to scan for a start of frame

CSE 461 University of Washington 5

CSE 461 University of Washington 6

Byte Stuffing
• Better idea:
– Have a special flag byte value that

means start/end of frame
– Replace (“stuff”) the flag inside the

frame with an escape code
– Complication: have to escape the

escape code too!

Byte Stuffing (2)
• Rules:
– Replace each FLAG in data with ESC FLAG
– Replace each ESC in data with ESC ESC

CSE 461 University of Washington 7

Byte Stuffing (3)
• Now any unescaped FLAG is the start/end of a frame

CSE 461 University of Washington 8

CSE 461 University of Washington 9

Bit Stuffing

• Can stuff at the bit level too
– Call a flag six consecutive 1s
– On transmit, after five 1s in the

data, insert a 0
– On receive, a 0 after five 1s is

deleted

Bit Stuffing (2)

• Example:

CSE 461 University of Washington 10

Transmitted bits
with stuffing

Data bits

Bit Stuffing (3)

• So how does it compare with byte stuffing?

CSE 461 University of Washington 11

Transmitted bits
with stuffing

Data bits

CSE 461 University of Washington 12

Topic
• Some bits will be received in error due

to noise. What can we do?
– Detect errors with codes »
– Correct errors with codes »
– Retransmit lost frames

• Reliability is a concern that cuts
across the layers – we’ll see it again

Later

Problem – Noise may flip received bits

CSE 461 University of Washington 13

Signal
0 0 0 0

11 1
0

0 0 0 0
11 1

0

0 0 0 0
11 1

0

Slightly
Noisy

Very
noisy

CSE 461 University of Washington 14

Approach – Add Redundancy
• Error detection codes

– Add check bits to the message bits to let
some errors be detected

• Error correction codes
– Add more check bits to let some errors be

corrected

• Key issue is now to structure the code
to detect many errors with few check
bits and modest computation

CSE 461 University of Washington 15

Motivating Example
• A simple code to handle errors:

– Send two copies! Error if different.

• How good is this code?
– How many errors can it detect/correct?
– How many errors will make it fail?

CSE 461 University of Washington 16

Motivating Example (2)
• We want to handle more errors

with less overhead
– Will look at better codes; they are

applied mathematics
– But, they can’t handle all errors
– And they focus on accidental errors

(will look at secure hashes later)

CSE 461 University of Washington 17

Using Error Codes
• Codeword consists of D data plus R

check bits (=systematic block code)

• Sender:
– Compute R check bits based on the D data

bits; send the codeword of D+R bits

D R=fn(D)
Data bits Check bits

CSE 461 University of Washington 18

Using Error Codes (2)
• Receiver:
– Receive D+R bits with unknown errors
– Recompute R check bits based on the

D data bits; error if R doesn’t match R’

D R’
Data bits Check bits

R=fn(D)
=?

CSE 461 University of Washington 19

Intuition for Error Codes
• For D data bits, R check bits:

• Randomly chosen codeword is unlikely
to be correct; overhead is low

All
codewords

Correct
codewords

CSE 461 University of Washington 20

R.W. Hamming (1915-1998)
• Much early work on codes:
– “Error Detecting and Error Correcting

Codes”, BSTJ, 1950

• See also:
– “You and Your Research”, 1986

Source: IEEE GHN, © 2009 IEEE

CSE 461 University of Washington 21

Hamming Distance
• Distance is the number of bit flips

needed to change D1 to D2

• Hamming distance of a code is the
minimum distance between any
pair of codewords

CSE 461 University of Washington 22

Hamming Distance (2)
• Error detection:
– For a code of distance d+1, up to d

errors will always be detected

CSE 461 University of Washington 23

Hamming Distance (3)
• Error correction:
– For a code of distance 2d+1, up to d

errors can always be corrected by
mapping to the closest codeword

