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Topic
• The Physical layer gives us a stream 

of bits. How do we interpret it as a 
sequence of frames?

…10110 …

Um?
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Framing Methods
• We’ll look at:
– Byte count (motivation)»
– Byte stuffing »
– Bit stuffing »

• In practice, the physical layer often 
helps to identify frame boundaries
– E.g., Ethernet, 802.11
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Byte Count

• First try:
– Let’s start each frame with a 

length field!
– It’s simple, and hopefully good 

enough …



Byte Count (2)

• How well do you think it works?
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Byte Count (3)
• Difficult to re-synchronize after framing error
– Want a way to scan for a start of frame
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Byte Stuffing
• Better idea:
– Have a special flag byte value that 

means start/end of frame
– Replace (“stuff”) the flag inside the 

frame with an escape code
– Complication: have to escape the 

escape code too!



Byte Stuffing (2)
• Rules:
– Replace each FLAG in data with ESC FLAG
– Replace each ESC in data with ESC ESC
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Byte Stuffing (3)
• Now any unescaped FLAG is the start/end of a frame
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Bit Stuffing

• Can stuff at the bit level too
– Call a flag six consecutive 1s
– On transmit, after five 1s in the 

data, insert a 0
– On receive, a 0 after five 1s is 

deleted 



Bit Stuffing (2)

• Example:
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Transmitted bits
with stuffing

Data bits



Bit Stuffing (3)

• So how does it compare with byte stuffing?
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Transmitted bits
with stuffing

Data bits
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Topic
• Some bits will be received in error due 

to noise. What can we do?
– Detect errors with codes »
– Correct errors with codes »
– Retransmit lost frames

• Reliability is a concern that cuts 
across the layers – we’ll see it again

Later



Problem – Noise may flip received bits 
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Approach – Add Redundancy 
• Error detection codes

– Add check bits to the message bits to let 
some errors be detected

• Error correction codes
– Add more check bits to let some errors be 

corrected

• Key issue is now to structure the code 
to detect many errors with few check 
bits and modest computation
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Motivating Example
• A simple code to handle errors:

– Send two copies! Error if different.

• How good is this code?
– How many errors can it detect/correct?
– How many errors will make it fail?
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Motivating Example (2)
• We want to handle more errors 

with less overhead
– Will look at better codes; they are 

applied mathematics
– But, they can’t handle all errors
– And they focus on accidental errors 

(will look at secure hashes later)
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Using Error Codes
• Codeword consists of D data plus R 

check bits (=systematic block code)

• Sender: 
– Compute R check bits based on the D data 

bits; send the codeword of D+R bits

D R=fn(D)
Data bits Check bits
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Using Error Codes (2)
• Receiver:  
– Receive D+R bits with unknown errors
– Recompute R check bits based on the 

D data bits; error if R doesn’t match R’

D R’
Data bits Check bits

R=fn(D)
=?
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Intuition for Error Codes
• For D data bits, R check bits:

• Randomly chosen codeword is unlikely 
to be correct; overhead is low

All
codewords

Correct
codewords
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R.W. Hamming (1915-1998)
• Much early work on codes:
– “Error Detecting and Error Correcting 

Codes”, BSTJ, 1950

• See also:
– “You and Your Research”, 1986

Source: IEEE GHN, © 2009 IEEE
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Hamming Distance
• Distance is the number of bit flips 

needed to change D1 to D2

• Hamming distance of a code is the 
minimum distance between any 
pair of codewords
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Hamming Distance (2)
• Error detection:
– For a code of distance d+1, up to d 

errors will always be detected
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Hamming Distance (3)
• Error correction:
– For a code of distance 2d+1, up to d 

errors can always be corrected by 
mapping to the closest codeword


