
TCP contd ….

Last class
• Connection setup

This class
• Connection release

CSE 461 University of Washington 2

Recap: Connection setup

•Three-way handshake:
• Client sends SYN(x)
• Server replies with SYN(y)ACK(x+1)
• Client replies with ACK(y+1)
• SYNs are retransmitted if lost

•Sequence and ack numbers carried
on further segments

1

2

3

Active party
(client)

Passive party
(server)

SYN (SEQ=x)

SYN (SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)
Time

CSE 461 University of Washington 3

Three-Way Handshake

•Suppose delayed, duplicate
copies of the SYN and ACK arrive
at the server!
• Improbable, but anyhow …

Active party
(client)

Passive party
(server)

SYN (SEQ=x)

(SEQ=x+1,
ACK=z+1)

CSE 461 University of Washington 4

Three-Way Handshake

•Suppose delayed, duplicate
copies of the SYN and ACK arrive
at the server!
• Improbable, but anyhow …

•Connection will be cleanly
rejected on both sides J

Active party
(client)

Passive party
(server)

SYN (SEQ=x)

SYN (SEQ=y, ACK=x+1)

(SEQ=x+1,
ACK=z+1)

X
XREJECT

REJECT

Connection Release

•Orderly release by both parties when done
• Delivers all pending data and “hangs up”
• Cleans up state in sender and receiver

•Key problem is to provide reliability while releasing
• TCP uses a “symmetric” close in which both sides

shutdown independently

CSE 461 University of Washington 5

CSE 461 University of Washington 6

TCP Connection Release

•Two steps:
• Active sends FIN(x), passive ACKs
• Passive sends FIN(y), active ACKs
• FINs are retransmitted if lost

•Each FIN/ACK closes one direction
of data transfer

Active party Passive party

CSE 461 University of Washington 7

TCP Connection Release (2)

•Two steps:
• Active sends FIN(x), passive ACKs
• Passive sends FIN(y), active ACKs
• FINs are retransmitted if lost

•Each FIN/ACK closes one direction
of data transfer

Active party Passive party

1

2

FIN (SEQ=x)

(SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)

FIN (SEQ=y, ACK=x+1)

TCP Connection State Machine

CSE 461 University of Washington 8

Both parties
run instances
of this state

machine

TCP Release

•Follow the active party

CSE 461 University of Washington 9

TCP Release (2)

•Follow the passive party

CSE 461 University of Washington 10

TCP Release (3)

•Again, with states …

CSE 461 University of Washington 11

1

2

CLOSED

FIN (SEQ=x)

(SEQ=y, ACK=x+1)

(SEQ=x+1, ACK=y+1)

FIN (SEQ=y, ACK=x+1)

Active party Passive party

FIN_WAIT_1

CLOSE_WAIT

LAST_ACKFIN_WAIT_2

TIME_WAIT

CLOSED

ESTABLISHED

(timeout)

ESTABLISHED

TIME_WAIT State

•Wait a long time after sending all segments and
before completing the close
• Two times the maximum segment lifetime of 60 seconds

•Why?

CSE 461 University of Washington 12

TIME_WAIT State

•Wait a long time after sending all segments and
before completing the close
• Two times the maximum segment lifetime of 60 seconds

•Why?
• ACK might have been lost, in which case FIN will be resent

for an orderly close
• Could otherwise interfere with a subsequent connection

CSE 461 University of Washington 13

Flow Control

Flow control goal

Match transmission speed to reception capacity
• Otherwise data will be lost

ARQ: Automatic repeat query

•ARQ with one message at a time is Stop-and-Wait

CSE 461 University of Washington 16

Frame 0

ACK 0Timeout Time

Sender Receiver

Frame 1

ACK 1

Limitation of Stop-and-Wait

• It allows only a single message to be outstanding
from the sender:
• Fine for LAN (only one frame fits in network anyhow)
• Not efficient for network paths with longer delays

CSE 461 University of Washington 17

Limitation of Stop-and-Wait (2)

•Example: B=1 Mbps, D = 50 ms
• RTT (Round Trip Time) = 2D = 100 ms
• How many packets/sec?
• 10

• Usage efficiency if packets are 10kb?
• (10,000 x 10) / (1 x 106) = 10%

•What is the efficiency if B=10 Mbps?
• 1%

CSE 461 University of Washington 18

Sliding Window

•Generalization of stop-and-wait
• Allows W packets to be outstanding
• Can send W packets per RTT (=2D)

• Pipelining improves performance
• Need W=2BD to fill network path

CSE 461 University of Washington 19

Sliding Window (2)

What W will use the network capacity with 10kb packets?

• Ex: B=1 Mbps, D = 50 ms
• 2BD = 2 x 106 x 50/1000 = 100 Kb
• W = 100 kb/10 = 10 packets

• Ex: What if B=10 Mbps?
• W = 100 packets

CSE 461 University of Washington 20

Sliding Window Protocol

•Many variations, depending on how buffers,
acknowledgements, and retransmissions are
handled

•Go-Back-N
• Simplest version, can be inefficient

•Selective Repeat
•More complex, better performance

CSE 461 University of Washington 21

Sender Sliding Window

•Sender buffers up to W segments until they are
acknowledged
• LFS=LAST FRAME SENT, LAR=LAST ACK REC’D
• Sends while LFS – LAR ≤ W

CSE 461 University of Washington 22

.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR LFS

W=5

Acked Unacked 3 ..Unavailable

Available

seq. number

Sliding
Window

Sender Sliding Window (2)

•Transport accepts another segment of data from the
Application ...
• Transport sends it (LFS–LAR à 5)

CSE 461 University of Washington 23

.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR

W=5

Acked Unacked 3 ..Unavailable

Sent

seq. number

Sliding
Window

LFS

Sender Sliding Window (3)

•Next higher ACK arrives from peer…
•Window advances, buffer is freed
• LFS–LAR à 4 (can send one more)

CSE 461 University of Washington 24

.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR

W=5

Acked Unacked 3 ..Unavailable

Available

seq. number

Sliding
Window

LFS

Receiver Sliding Window – Go-Back-N

•Receiver keeps only a single packet buffer for the
next segment
• State variable, LAS = LAST ACK SENT

•On receive:
• If seq. number is LAS+1, accept and pass it to app, update

LAS, send ACK
• Otherwise discard (as out of order)

CSE 461 University of Washington 25

Receiver Sliding Window – Selective Repeat

• Receiver passes data to app in order, and buffers out-of-
order segments to reduce retransmissions

• ACK conveys highest in-order segment, plus hints about out-
of-order segments
• Ex: I got everything up to 42 (LAS), and got 44, 45

• TCP uses a selective repeat design; we’ll see the details later

CSE 461 University of Washington 26

Receiver Sliding Window – Selective Repeat (2)

•Buffers W segments, keeps state variable LAS = LAST
ACK SENT

•On receive:
• Buffer segments [LAS+1, LAS+W]
• Send app in-order segments from LAS+1, and update LAS
• Send ACK for LAS regardless

CSE 461 University of Washington 27

5

Sender Sliding Window – Selective Repeat

•Keep normal sliding window
• If out-of-order ACK arrives
• Send LAR+1 again!

CSE 461 University of Washington 28

.. 5 6 7 .. 2 4 5 3 ..

LAR

W=5

Acked Unacked 3 ..Unavailable

Ack Arrives Out of Order!

seq. number

Sliding
Window

LFS

..

5

Sender Sliding Window – Selective Repeat (2)

•Keep normal sliding window
• If in-order ACK arrives
•Move window and LAR, send more messages

CSE 461 University of Washington 29

.. 5 6 7 .. 4 5 3 ..

LAR

W=5

Acked Unacked 3 ..

In-order ack arrives…

seq. number

Sliding
Window

LFS

....
Now Available

Sliding Window – Retransmissions

•Go-Back-N uses a single timer to detect losses
• On timeout, resends buffered packets starting at LAR+1

•Selective Repeat uses a timer per unacked segment
to detect losses
• On timeout for segment, resend it
• Hope to resend fewer segments

CSE 461 University of Washington 30

Sequence Numbers

Need more than 0/1 for Stop-and-Wait … but how many?
• For Selective Repeat: 2W seq numbers
• W for packets, plus W for earlier acks

• For Go-Back-N: W+1 sequence numbers

Typically implement seq. number with an N-bit counter that
wraps around at 2N—1
• E.g., N=8: …, 253, 254, 255, 0, 1, 2, 3, …

CSE 461 University of Washington 31

Sequence Time Plot

CSE 461 University of Washington 32

Time

Se
q.

 N
um

be
r

Acks
(at Receiver)

Delay (=RTT/2)

Transmissions
(at Sender)

Sequence Time Plot (2)

CSE 461 University of Washington 33

Time

Se
q.

 N
um

be
r

Go-Back-N scenario

Sequence Time Plot (3)

CSE 461 University of Washington 34

Time

Se
q.

 N
um

be
r Loss

Timeout

Retransmissions

