TCP recap

Three phases
1. Connection setup

2. Data transfer

 Flow control — don’t overwhelm the receiver
* ARQ - one outstanding packet

* Go-back-N, selective repeat -- sliding window of W packets
* Tuning flow control (ack clocking, RTT estimation)

e Congestion control

3. Connection release

ACK Clocking

Sliding Window ACK Clock

* Typically, the sender does not know B or D

* Each new Ack advances the sliding window and lets
a new segment enter the network
* ACKs “clock” data segments

2019181716151413 12 11 Data

i_:

10

I Lniylyy!
567829

Ack1l 2 3 4

Benefit of ACK Clocking

* Consider what happens when sender injects a burst
of segments into the network

Fast link Slow (bottleneck) Imk Fast link

CSE 461 University of Washington

Benefit of ACK Clocking (2)

* Segments are buffered and spread out on slow link

Segments

L “spread out”
A
(\
—=f == - %5—5

Fast link o Slow (bottleneck) Iinkx/ Fast link

CSE 461 University of Washington 5

Benefit of ACK Clocking (3)

* ACKS maintain the spread back to the original sender

NP NI NP e

4
Slow link \‘{\

Y
Acks maintain spread

CSE 461 University of Washington 6

Benefit of ACK Clocking (4)

* Sender clocks new segments with the spread
* Now sending at the bottleneck link without queuing!

Segments spread _AQueue no longer builds
A
%_5

Slow link

Benefit of ACK Clocking (4)

* Helps run with low levels of loss and delay!
* The network smooths out the burst of data segments
* ACK clock transfers this smooth timing back to sender

* Subsequent data segments are not sent in bursts so do
not queue up in the network

TCP Uses ACK Clocking

* TCP uses a sliding window because of the value of
ACK clocking

*Sliding window controls how many segments are
inside the network

* TCP only sends small bursts of segments to let the
network keep the traffic smooth

Problem

*Sliding window has pipelining to keep network busy
* What if the receiver is overloaded?

Streaming video I

Big Iron Wee Mobile

CSE 461 University of Washington 10

Receiver Sliding Window

* Consider receiver with W buffers
o LAS=LAST ACK SENT
* app pulls in-order data from buffer with recv() call

Sliding

Window W=5

&=

nis‘h ed| |Acgeptable 0 high

T

LAS seq. numb,er

F

D
—]
(@)

Receiver Sliding Window (2)

* Suppose the next two segments arrive but app does
not call recv()

W=5

-
D

—]

(@)

'nis‘hed Acgeptable

I

LAS seq. numb,er

0 hligh

Receiver Sliding Window (3)

* Suppose the next two segments arrive but app does
not call recv()
* LAS rises, but we can’t slide window!

W=5

- |

'nis‘h ed |Acked Tao high

I

LAS seq. number

Receiver Sliding Window (4)

* Further segments arrive (in order) we fill buffer
* Must drop segments until app recvs!

Nothing
W=5 Acceptable!
Finished |Agkec Too high

T

LAS seq. numb,er

Receiver Sliding Window (5)

* App recv() takes two segments

* Window slides (phew)

W=5 Acceptable

2

/

- |

inish

ed

Ac

eo

I

LAS

seq. number

Flow Control

* Avoid loss at receiver by telling sender the available
buffer space
* WIN=#Acceptable, not W (from LAS)

W=5 Acceptable
/

2

inished Ackec

- |

T

LAS seq. numb,er

Flow Control (2)

* Sender uses lower of the sliding window and flow
control window (WIN) as the effective window size

W=3 Acceptable

/

'nis‘h ed |Acked Tao high

I \

LAS sed. numb,er

- |

Flow Control (3)

Sender Receiver Receiver's
Application buffer
does a 2K 0 4K
° I I write -
- [— mpty
TCP-style example —
——ISEQ=G7_ l

* SEQ/ACK sliding window T =
i FlOW Contr0| With WIN Qpplicag&n

SEQ + length < ACK+WIN T e
e 4KB buffer at receiver senderis eI e ~___ Aepication

TACK = I reads 2K

.......

* Circular buffer of bytes e

.....
. o

" <[=]~
Sender may -

send up to 2K —=

CSE 461 University of Washington 18

Topic

* How to set the timeout for sending a retransmission
* Adapting to the network path

S

Network

Retransmissions

* With sliding window, detecting loss with timeout
* Set timer when a segment is sent
* Cancel timer when ack is received
* |If timer fires, retransmit data as lost

Retransmit! J

—>

Timeout Problem

* Timeout should be “just right”

* Too long =2 inefficient network capacity use
* Too short = spurious resends waste network capacity

* But what is “just right”?

e Easy to set on a LAN (Link)
e Short, fixed, predictable RTT

* Hard on the Internet (Transport)
* Wide range, variable RTT

Example of RTTs

1000

900

(0]
o
o

~
o
o

(o))
o
o

400

Round Trip Time (ms)

N
o
o

100

BCN->SEA->BCN

\/J V A A A /

A A M WA WL M A

0 20 40 60 80 100 120 140 160 180 200
CSE 461 University of Washington SECOndS

22

Example of RTTs (2)

1000

900

e
~l
o
o

Time (ms)

(%
o
o

400

Round Tri

N
o
o

100

BCN->SEA->BCN

Variation due to queuing at routers,

e changes in network paths, etc.

A .
TN T LYY

UV V Lo/t L] | | IAVAVY] 1) ad ¥

=
—
—
D>

Propagation (+transmission) delay = 2D

20 40 60 80 100 120 140 160 180 200

CSE 461 University of Washington SeCOndS

23

Example of RTTs (3)

1000
900 Timer too high! —
gg 800 \
O 700 Need to adapt to the |
.E_ 600 network conditions |
Q. 500 ﬁ
_Ii w | ; \/‘V/ Timer too low!)
= 300 - d A A A /
R b\ﬁ/\/\,.j JH“ (TR AT VAT " LYY

100

0

0 20 40 60 80 100 120 140 160 180 200

CSE 461 University of Washington SECOndS 24

Adaptive Timeout

* Smoothed estimates of the RTT (1) and variance in RTT (2)
e Update estimates with a moving average
1. SRTTy.,=0.9*SRTT, + 0.1*RTT.,
2. Svary,; =0.9*%Svary + 0.1*|RTTy,;— SRTTy.4|

* Set timeout to a multiple of estimates

* To estimate the upper RTT in practice
* TCP Timeout, = SRTTy + 4*Svar,

Example of Adaptive Timeout

1000
900
800 .
700
é) 600
= s00 ﬁ SRTT
= U\
oC 400 . N NN
\l N\
300 A Av // U ’\ A A /
/
200 J‘J V\, L | W\ U B
Svar
100 w“wm\z%\w
0 T T T T T T T T T 1
0 20 40 60 80 100 120 140 160 180 200

CSE 461 University of Washington SECOndS 26

Example of Adaptive Timeout (2)

1000
o0 L .Early TS
so LIMeout C Timeout (SRTT + 4*Svar)
700 | /
g 600 -+
= ﬁ
|_
o

500

400 A IJ [\"l'“"\
300 / | ﬁ,f . \ N
200 %J ITAVIvay . W\) s -

100 A AT N

0

0 20 40 60 80 100 120 140 160 180 200

CSE 461 University of Washington SECOndS 27

Adaptive Timeout (2)

*Simple to compute, does a good job of tracking
actual RTT

e Little “headroom” to lower
* Yet very few early timeouts

* Turns out to be important for good performance
and robustness

Congestion

TCP to date:

* We can set up and tear connections
e Connection establishment and release handshakes

* Keep the sending and receiving buffers from
overflowing (flow control)

What’s missing?

Network Congestion

* A “traffic jam” in the network
 Later we will learn how to control it

What'’s the hold up?]

CSE 461 University of Washington

31

Congestion Collapse in the 1980s

* Early TCP used fixed size window (e.g., 8 packets)
* Initially fine for reliability

* But something happened as the network grew

* Links stayed busy but transfer rates fell by orders of
magnitude!

Nature of Congestion

* Routers/switches have internal buffering

A\ 4

\ /4

— y
—= —=/
(! !

\ 4

A4

\\4

Input

’ 7 T N C— =

—
Fabric éhnputBuﬁbr

/
Input Buffer

CSE 461 University of Washington 33

Nature of Congestion (2)

* Simplified view of per port output queues
 Typically FIFO (First In First Out), discard when full

Router

\ 4

Router

v

v

v

\\Queued

(FIFO) Queue packets

Nature of Congestion (3)

* Queues help by absorbing bursts when input >
output rate

* But if input > output rate persistently, queue will
overflow
* This is congestion

* Congestion is a function of the traffic patterns — can
occur even if every link has the same capacity

Effects of Congestion

* What happens to performance as we increase load?

A A

o . Capacity

$ n
% e
) @)
3 5
© 0
Q_ S
= >
2 S
O O
o

O

O

Offered load (packets/sec) Offered load (packets/sec)

Effects of Congestion (2)

* What happens to performance as we increase load?

A A
o Capacity
g / g Onset of
% Desired S \ ,,
= response P
Q — VAN
§ Congestion & /
= collapse S N4
@)
@)
Q) :
P B S

Offered load (packets/sec) Offered load (packets/sec)

Effects of Congestion (3)

* As offered load rises, congestion occurs as queues
begin to fill:

* Delay and loss rise sharply with load
* Throughput < load (due to loss)
* Goodput << throughput (due to spurious retransmissions)

* None of the above is good!
* Want network performance just before congestion

TCP Tahoe/Reno

* TCP extensions and features we will study:
* AIMD
* Fair Queuing
* Slow-start
* Fast Retransmission
* Fast Recovery

TCP Timeline

3-way handshake
(Tomlinson, ‘75)

Origins of “TCP”
(Cerf & Kahn, '74)

TCP Reno
TCP/IP “flag day” (Jacobson, "90)
(BSD Unix 4.2, ‘83) A
TCP Tahoe
TCP and IP (Jacobson, '88)

(RFC 791/793, ‘81)

/1

Congestion collapse
Observed, ‘86

I I |

| |
1970 1975

I I [~
1980 1985 1990
)\

Y Y '
Pre-history Congestion control

TCP Timeline (2)

ECN S=ckarooq] TCP LEDBAT
(Floyd, ‘94)F<====———___ 5 (IETF’08)

Router support

Delay | TCP Vegas
based | (Brakmo, ‘93)

e ————
—_—— —
e ———
—_——
— — —
——

— ——
—_—
—_—
—_—
—_—
—_—
_—

—— —
—— —
e ———
——

=s=zTTTol e TTTTmeeo ->Compound TCP
Tt T ~(Windows, '07)
TCP with SACK NI ’I’:AST TCP

(Floyd, ‘96) [~<_ -

N (Low etal., '04) 1cp cuBIC

TCP Reno I ’
(Jacobson, ‘90) ~.[TCP New Reno RN ~7 (Linux, '06)

T ~3 TCP BIC

“(Linux, ‘04

| | | | |

| | | | g
1990 1995 2000 2005 2010
J \

. Y X
Classic congestion control Diversification

Bandwidth Allocation

* Important task for network is to allocate its capacity
to senders
* Good allocation is both efficient and fair

e Efficient: most capacity is used but there is no
congestion

* Fair: every sender gets a reasonable share of the
network

Efficiency vs. Fairness

e Cannot always have both!

* Example network with traffic:
* A>B, B2>Cand A=>C
* How much traffic can we carry?

Efficiency vs. Fairness (2)

e |If we care about fairness:

* Give equal bandwidth to each flow
e A2>B: ¥ unit, B=>C: %, and A=>C, %
e Total traffic carried is 1 % units

A B

Efficiency vs. Fairness (3)

* If we care about efficiency:

* Maximize total traffic in network
e A>B: 1 unit, B=>C: 1, and A=>C,0
e Total traffic rises to 2 units!

A B

Fairness

e What’s a “fair” bandwidth allocation?
e The max-min fair allocation

The Slippery Notion of Fairness

* Why is “equal per flow” fair anyway?
A2 C uses more network resources than A2>B or B>C
* Host A sends two flows, B sends one

* Not productive to seek exact fairness

* More important to avoid starvation
* A node that cannot use any bandwidth

* “Equal per flow” is good enough

Generalizing “Equal per Flow”

e Bottleneck for a flow of traffic is the link that limits

its bandwidth
* Where congestion occurs for the flow
* For A2>C, link A—B is the bottleneck

A B C
1 10

Bottleneck

Generalizing “Equal per Flow” (2)

* Flows may have different bottlenecks
* For A2>C, link A—B is the bottleneck

* For B=>C, link B—C is the bottleneck
* Can no longer divide links equally ...

A B C
1 10

Max-Min Fairness

* Intuitively, flows bottlenecked on a link get an equal
share of that link

* Max-min fair allocation is one that:

* Increasing the rate of one flow will decrease the rate of a
smaller flow

* This “maximizes the minimum” flow

Max-Min Fairness (2)

*To find it given a network, imagine “pouring water
into the network”

1. Start with all flows at rate O

2. Increase the flows until there is a new bottleneck in
the network

3. Hold fixed the rate of the flows that are bottlenecked
4. Go to step 2 for any remaining flows

Max-Min Example

e Example: network with 4 flows, link bandwidth =1
* What is the max-min fair allocation?

A . /"’j\\ /" '-';A\

CSE 461 University of Washington

53

Max-Min Example (2)

* When rate=1/3, flows B, C, and D bottleneck R4—R5

* Fix B, C, and D, continue to increase A

A
Ac - - o ;;I
—7 & T
R1 R R3 > g
Bottleneck
B ¢ \
s : e p— V-
CL ,L : ‘O - \ L\b |

N4

bo R4 R5 R6 D

CSE 461 University of Washington 54

Max-Min Example (3)

* When rate=2/3, flow A bottlenecks R2—R3. Done.

Bottleneck
A
A« o | -
N h_,' \
R1 ' B
B ¢ Bottleneck
| —— e -~C
Ce | = '

e

Do R4 R5 R D

CSE 461 University of Washington

55

Max-Min Example (4)

*End with A=2/3, B, C, D=1/3, and R2—R3, R4—R5

full
B) o/3
Ae o - L —
Zm 1/3
5 18 113
e 1/3
— 173 173

D R4

CSE 461 University of Washington

56

Adapting over Time

°AIIoAcation changes as flows start and stop

Bandwidth allocation

1

Flow 1
— Flow 2 stops
R ., g
: Flow 2 starts '|
: v Flow 3 starts !
——-I L—.———.—.—-—.’
1 4 9 Time

CSE 461 University of Washington 57

Adapting over Time (2)

Bandwidth allocation

A Flow 1 slows when Flow 1 speeds up
Flow 2 starts when Flow 2 stops
Flow 1 Flow 3 limit
is elsewhere
____________ ._._........_......Fi__, Flow 2 stops
Y L P
: Flow 2 starts '|
: v Flow 3 starts !
——-I L—.———.—.—-—.’
1 4 9 Time

CSE 461 University of Washington 58

