TCP recap

Three phases
1. Connection setup

2. Data transfer

 Flow control — don’t overwhelm the receiver
* ARQ - one outstanding packet

* Go-back-N, selective repeat -- sliding window of W packets
* Tuning flow control (ack clocking, RTT estimation)

e Congestion control

3. Connection release



ACK Clocking



Sliding Window ACK Clock

* Typically, the sender does not know B or D

* Each new Ack advances the sliding window and lets
a new segment enter the network
* ACKs “clock” data segments
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Benefit of ACK Clocking

* Consider what happens when sender injects a burst
of segments into the network

Fast link Slow (bottleneck) Imk Fast link
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Benefit of ACK Clocking (2)

* Segments are buffered and spread out on slow link

Segments

L “spread out”
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Benefit of ACK Clocking (3)

* ACKS maintain the spread back to the original sender
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Benefit of ACK Clocking (4)

* Sender clocks new segments with the spread
* Now sending at the bottleneck link without queuing!

Segments spread _AQueue no longer builds
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Benefit of ACK Clocking (4)

* Helps run with low levels of loss and delay!
* The network smooths out the burst of data segments
* ACK clock transfers this smooth timing back to sender

* Subsequent data segments are not sent in bursts so do
not queue up in the network



TCP Uses ACK Clocking

* TCP uses a sliding window because of the value of
ACK clocking

*Sliding window controls how many segments are
inside the network

* TCP only sends small bursts of segments to let the
network keep the traffic smooth



Problem

*Sliding window has pipelining to keep network busy
* What if the receiver is overloaded?

Streaming video I
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Receiver Sliding Window

* Consider receiver with W buffers
o LAS=LAST ACK SENT
* app pulls in-order data from buffer with recv() call
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Receiver Sliding Window (2)

* Suppose the next two segments arrive but app does
not call recv()
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Receiver Sliding Window (3)

* Suppose the next two segments arrive but app does
not call recv()
* LAS rises, but we can’t slide window!
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Receiver Sliding Window (4)

* Further segments arrive (in order) we fill buffer
* Must drop segments until app recvs!

Nothing
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Receiver Sliding Window (5)

* App recv() takes two segments

* Window slides (phew)
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Flow Control

* Avoid loss at receiver by telling sender the available
buffer space
* WIN=#Acceptable, not W (from LAS)
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Flow Control (2)

* Sender uses lower of the sliding window and flow
control window (WIN) as the effective window size
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Flow Control (3)

Sender Receiver Receiver's
Application buffer
does a 2K 0 4K
° I I write -
- [ — mpty
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Topic

* How to set the timeout for sending a retransmission
* Adapting to the network path

S

Network




Retransmissions

* With sliding window, detecting loss with timeout
* Set timer when a segment is sent
* Cancel timer when ack is received
* |If timer fires, retransmit data as lost

Retransmit! J

—>




Timeout Problem

* Timeout should be “just right”

* Too long =2 inefficient network capacity use
* Too short = spurious resends waste network capacity

* But what is “just right”?

e Easy to set on a LAN (Link)
e Short, fixed, predictable RTT

* Hard on the Internet (Transport)
* Wide range, variable RTT



Example of RTTs
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Example of RTTs (2)

1000

900

e
~l
o
o

Time (ms)

(%
o
o

400

Round Tri

N
o
o

100

BCN->SEA->BCN

Variation due to queuing at routers,

e changes in network paths, etc.

A .
TN T LYY

UV V Lo/t L] | | IAVAVY] 1) ad ¥

=
—
—
D>

Propagation (+transmission) delay = 2D

20 40 60 80 100 120 140 160 180 200

CSE 461 University of Washington SeCOndS

23



Example of RTTs (3)
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Adaptive Timeout

* Smoothed estimates of the RTT (1) and variance in RTT (2)
e Update estimates with a moving average
1. SRTTy.,=0.9*SRTT, + 0.1*RTT.,
2. Svary,; =0.9*%Svary + 0.1*|RTTy,;— SRTTy.4|

* Set timeout to a multiple of estimates

* To estimate the upper RTT in practice
* TCP Timeout, = SRTTy + 4*Svar,



Example of Adaptive Timeout

1000
900
800 .
700
é) 600
= s00 ﬁ SRTT
= U\
oC 400 . N NN
\l N\
300 A Av // U ’\ A A /
/
200 J‘J V\, L | W\ U B
Svar
100 w“wm\z%\w
0 T T T T T T T T T 1
0 20 40 60 80 100 120 140 160 180 200

CSE 461 University of Washington SECOndS 26



Example of Adaptive Timeout (2)
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Adaptive Timeout (2)

*Simple to compute, does a good job of tracking
actual RTT

e Little “headroom” to lower
* Yet very few early timeouts

* Turns out to be important for good performance
and robustness



Congestion



TCP to date:

* We can set up and tear connections
e Connection establishment and release handshakes

* Keep the sending and receiving buffers from
overflowing (flow control)

What’s missing?



Network Congestion

* A “traffic jam” in the network
 Later we will learn how to control it

What'’s the hold up?]
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Congestion Collapse in the 1980s

* Early TCP used fixed size window (e.g., 8 packets)
* Initially fine for reliability

* But something happened as the network grew

* Links stayed busy but transfer rates fell by orders of
magnitude!




Nature of Congestion

* Routers/switches have internal buffering
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Nature of Congestion (2)

* Simplified view of per port output queues
 Typically FIFO (First In First Out), discard when full
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Nature of Congestion (3)

* Queues help by absorbing bursts when input >
output rate

* But if input > output rate persistently, queue will
overflow
* This is congestion

* Congestion is a function of the traffic patterns — can
occur even if every link has the same capacity



Effects of Congestion

* What happens to performance as we increase load?
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Effects of Congestion (2)

* What happens to performance as we increase load?
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Effects of Congestion (3)

* As offered load rises, congestion occurs as queues
begin to fill:

* Delay and loss rise sharply with load
* Throughput < load (due to loss)
* Goodput << throughput (due to spurious retransmissions)

* None of the above is good!
* Want network performance just before congestion



TCP Tahoe/Reno

* TCP extensions and features we will study:
* AIMD
* Fair Queuing
* Slow-start
* Fast Retransmission
* Fast Recovery



TCP Timeline

3-way handshake
(Tomlinson, ‘75)
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TCP Timeline (2)
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Bandwidth Allocation

* Important task for network is to allocate its capacity
to senders
* Good allocation is both efficient and fair

e Efficient: most capacity is used but there is no
congestion

* Fair: every sender gets a reasonable share of the
network




Efficiency vs. Fairness

e Cannot always have both!

* Example network with traffic:
* A>B, B2>Cand A=>C
* How much traffic can we carry?




Efficiency vs. Fairness (2)

e |If we care about fairness:

* Give equal bandwidth to each flow
e A2>B: ¥ unit, B=>C: %, and A=>C, %
e Total traffic carried is 1 % units

A B




Efficiency vs. Fairness (3)

* If we care about efficiency:

* Maximize total traffic in network
e A>B: 1 unit, B=>C: 1, and A=>C,0
e Total traffic rises to 2 units!

A B




Fairness

e What’s a “fair” bandwidth allocation?
e The max-min fair allocation




The Slippery Notion of Fairness

* Why is “equal per flow” fair anyway?
A2 C uses more network resources than A2>B or B>C
* Host A sends two flows, B sends one

* Not productive to seek exact fairness

* More important to avoid starvation
* A node that cannot use any bandwidth

* “Equal per flow” is good enough




Generalizing “Equal per Flow”

e Bottleneck for a flow of traffic is the link that limits

its bandwidth
* Where congestion occurs for the flow
* For A2>C, link A—B is the bottleneck

A B C
1 10

Bottleneck



Generalizing “Equal per Flow” (2)

* Flows may have different bottlenecks
* For A2>C, link A—B is the bottleneck

* For B=>C, link B—C is the bottleneck
* Can no longer divide links equally ...

A B C
1 10




Max-Min Fairness

* Intuitively, flows bottlenecked on a link get an equal
share of that link

* Max-min fair allocation is one that:

* Increasing the rate of one flow will decrease the rate of a
smaller flow

* This “maximizes the minimum” flow




Max-Min Fairness (2)

*To find it given a network, imagine “pouring water
into the network”

1. Start with all flows at rate O

2. Increase the flows until there is a new bottleneck in
the network

3. Hold fixed the rate of the flows that are bottlenecked
4. Go to step 2 for any remaining flows



Max-Min Example

e Example: network with 4 flows, link bandwidth =1
* What is the max-min fair allocation?

A . /"’j\\ /" '-';A\
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Max-Min Example (2)

* When rate=1/3, flows B, C, and D bottleneck R4—R5

* Fix B, C, and D, continue to increase A

A
Ac - - o ;;I
—7 & T
R1 R R3 > g
Bottleneck
B ¢ \
s : e p— V-
CL ,L : ‘O - \ L\b |

N4

bo R4 R5 R6 D
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Max-Min Example (3)

* When rate=2/3, flow A bottlenecks R2—R3. Done.

Bottleneck
A
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R1 ' B
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Max-Min Example (4)

*End with A=2/3, B, C, D=1/3, and R2—R3, R4—R5

full
B ) o/3
Ae o - L —
Zm 1/3
5 18 113
e 1/3
— 173 173

D R4

CSE 461 University of Washington

56



Adapting over Time

°AIIoAcation changes as flows start and stop

Bandwidth allocation

1

Flow 1
— Flow 2 stops
R ., g
: Flow 2 starts '|
: v Flow 3 starts !
——-I L—.———.—.—-—.’
1 4 9 Time
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Adapting over Time (2)

Bandwidth allocation

A Flow 1 slows when Flow 1 speeds up
Flow 2 starts when Flow 2 stops
Flow 1 Flow 3 limit
is elsewhere
____________ ._._........_......Fi__, Flow 2 stops
Y L P
: Flow 2 starts '|
: v Flow 3 starts !
——-I L—.———.—.—-—.’
1 4 9 Time
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