
Recap of routing thus far

Distributed routing, nodes exchange knowledge of destinations
But dealing with individual destinations does not scale
Scaling techniques
• Hierarchical routing – at coarser granularity
• Aided by prefix structure

• Subnetting – break coarser prefixes into granular ones while allocating them
• Aggregation – combine granular prefixes into coarser ones 



Finding “Best” Paths
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What are “Best” paths anyhow?
•Many possibilities:
• Latency, avoid circuitous paths
• Bandwidth, avoid slow links
•Money, avoid expensive links
• Hops, to reduce switching

•But only consider topology
• Ignore workload, e.g., hotspots
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Shortest Paths

We’ll approximate “best” by a cost function that 
captures the factors
•Often called “least cost” or “shortest”

1. Assign each link a cost (distance)
2. Define best path between each pair of nodes as 

the path that has  the least total cost
3. Pick randomly to any break ties
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Shortest Paths (2)

•Find the shortest path A à E

•All links are bidirectional, with 
equal costs in each direction
• Can extend model to unequal         

costs if needed A B

C

D

E

F

G

H

2

1

10

2

2
4

2
4

4

3

3

3



CSE 461 University of Washington 6

Shortest Paths (3)

•ABCE is a shortest path
• cost(ABCE) = 4 + 2 + 1 = 7

• It is shorter than:
• cost(ABE) = 8
• cost(ABFE) = 9
• cost(AE) = 10
• cost(ABCDE) = 10
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Shortest Paths (4)

•Optimality property:
• Subpaths of shortest paths are 

also shortest paths 
•ABCE is a shortest path

àSo are ABC, AB, BCE, BC, CE
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Sink Trees

•Sink tree for a destination is 
the union of all shortest paths 
towards the destination
• Similarly source tree

•Find the sink tree for E A B
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Sink Trees (2)

• Implications:
• Only need to use destination to 

follow shortest paths
• Each node only need to send to 

the next hop
•Forwarding table at a node
• Lists next hop for each 

destination
• Routing table may know more
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Distance Vector Routing



Distance Vector Routing

•Simple, early routing approach
• Used in ARPANET, and RIP

•One of two main approaches to routing
• Distributed version of Bellman-Ford
•Works, but very slow convergence after some failures 

• Link-state algorithms are now typically used in 
practice
•More involved, better behavior
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Distance Vector Setting

Each node computes its forwarding table in a 
distributed setting:

1. Nodes know only the cost to their neighbors; not topology
2. Nodes can talk only to their neighbors using messages
3. All nodes run the same algorithm concurrently
4. Nodes and links may fail, messages may be lost
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Distance Vector Algorithm

Each node maintains a vector of (distance, next hop) 
to all destinations
1. Initialize vector with 0 (zero) cost to self, ∞ (infinity) to 

other destinations
2. Periodically send vector to neighbors
3. Update vector for each destination by selecting the 

shortest distance heard, after adding cost of neighbor link
4. Use the best neighbor for forwarding
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Distance Vector (2)

•Consider from the point of view of node A
• Can only talk to nodes B and E
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Distance Vector (3)

•First exchange with B, E; learn best 1-hop routes
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Distance Vector (4)

•Second exchange; learn best 2-hop routes
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Distance Vector (4)

•Third exchange; learn best 3-hop routes
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Distance Vector (5)

•Subsequent exchanges; converged
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Distance Vector Dynamics

•Adding routes:
• News travels one hop per exchange

•Removing routes:
•When a node fails, no more exchanges, other nodes forget
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Count to Infinity: Problem

•Good news travels quickly, bad news slowly 
(inferred)
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“Count to infinity” scenario

Desired convergence
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Count to Infinity: Heuristics

• “Split horizon” 
• Don’t send route back to where you learned it from. 

•Poison reverse
• Send “infinity” when you notice a disconnect
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Count to Infinity: Heuristics (2)

•Neither split horizon and poison reverse are very 
effective in practice
• Link state is now favored except when resource-limited
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RIP (Routing Information Protocol)

•DV protocol with hop count as metric
• Infinity is 16 hops; limits network size
• Includes split horizon, poison reverse

•Routers send vectors every 30 seconds
• Runs on top of UDP
• Time-out in 180 secs to detect failures

•RIPv1 specified in RFC1058 (1988)
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