Link Layer: Error detection and
correction

Problem: Noise may Flip Received Bits

* Link layers provides some protection
* Detect errors with codes
e Correct errors with codes
* Retransmit lost frames Later

* Reliability concern cuts across the layers
*E.g, TCP in the transport layer, DNS in the app layer

Problem: Noise may Flip Received Bits

0 0 0 0 O

Signal

Slghty 11

oisy 0 0 0 0 0 1

CSE 461 University of Washington

|deas?

Approach — Add Redundancy

* Error detection codes: Add check bits to the message bits
to let some errors be detected

* Error correction codes: Add more check bits to let some
errors be corrected

* Key issue: Structure the code such that

* Need few check bits to detect/correct many errors
* Modest computation

Motivating Example

* A simple code to handle errors:
* Send two copies! Error detected if different.

* How good is this code?
* How many errors can it detect/correct?
* How many errors will make it fail?

Want to Handle More Errors w/ Fewer Bits

* We'll look at better codes (applied mathematics)
* But, they can’t handle all errors
* And they focus on accidental (random) errors

Using Error Codes

* Codeword consists of D data plus R check bits
(=systematic block code)

Data bits Check bits
D R=fn(D) —

e Sender:

* Compute R check bits based on the D data bits; send the
codeword of D+R bits

Using Error Codes (2)

e Receiver:

* Receive D+R bits with unknown errors
 Recompute R check bits based on the D data bits
* Error detected if R doesn’t match R’

Data bits Check bits

—_— D

RI

R=fn(D)

N
/1

=?

Intuition for Error Codes

e For D data bits, R check bits:

All possible D+R bits —(A

Correct codewords ——0
\ J

 Randomly chosen D+R bits is unlikely to be correct
* Low, controllable overhead

RW. Hamming (1915-1998)

* Much early work on codes:

* “Error Detecting and Error Correcting
Codes”, BSTJ, 1950

*See also:
* “You and Your Research”, 1986

CSE 461 University of Washington

Source: I[EEE GHN, © 2009 IEEE

10

Hamming Distance

* Distance is the number of bit flips needed to change
D,to D,

* Homming distance of a coding is the minimum error
distance between any pair of codewords (bit-strings)
that cannot be detected

Hamming Distance (2)

*Error detection:
* For a coding of distance d+1, up to d errors will always be
detected
* Error correction:

* For a coding of distance 2d+1, up to d errors can always
be corrected by mapping to the closest valid codeword

Simple Error Detection — Parity Bit

* Take D data bits, add 1 check bit
* Check bit could be sum modulo 2 or XOR

Parity Bit (2)

* How well does parity work?
* What is the distance of the code?
* How many errors will it detect/correct?

* What about larger errors?

Checksums

*|dea: sum up data in N-bit words
* Widely used in, e.g., TCP/IP/UDP

1500 bytes 16 bits

* Stronger protection than parity

Internet Checksum

*Sum is defined in 1s complement arithmetic (must
add back carries)
* And it’s the negative sum

* “The checksum field is the 16 bit one's complement of the
one's complement sum of all 16 bit words ...” — RFC 791

Internet Checksum (2)

Sending:

1.Arrange data in 16-bit words

2.Put zero in checksum position, add
3.Add any carryover back to get 16 bits
4.Negate (complement) to get sum

0001
£204
£f4£f5
f£F6£7

Internet Checksum (3)

Sending:

1.Arrange data in 16-bit words

2.Put zero in checksum position, add
3.Add any carryover back to get 16 bits
4.Negate (complement) to get sum

0001
£204
f£4£f5
f£F6£7
+(0000)

Internet Checksum (4)

Receiving: 0001
: : £204

1. Arrange data in 16-bit words £4£5
2. Checksum will be non-zero, add f6£f7
+ 220c

3. Add any carryover back to get 16 bits = —————-
4. Negate the result and check it is O

Internet Checksum (5)

Receiving: 0001
: : £204

1. Arrange data in 16-bit words FA4F5
2. Checksum will be non-zero, add f6£7
+ 220c

3. Add any carryover back to get 16 bits = —————-
4. Negate the result and check itis O 2f£f£d
fffd

+ 2

ffff

Internet Checksum (6)

e How well does the checksum work?
e What is the distance of the code?
* How many errors will it detect/correct?

Why Error Correction is Hard

* If we had reliable check bits we could use them to
narrow down the position of the error
* Then correction would be easy

e But error could be in the check bits as well as the
data bits!

* Data might even be correct

Intuition for Error Correcting Code

* Suppose we construct a code with a Hamming
distance of at least 3

* Need 23 bit errors to change one valid codeword into
another

* Single bit errors will be closest to a unique valid codeword

*If we assume errors are only 1 bit, we can correct
mapping an error to the closest valid codeword
* Works for d errors if HD > 2d + 1

Intuition (2)

e Visualization of code:

00000 Q. vaiic
O@® OO @0 odeverd

OO00000

000000,
Q ‘ Q Q ‘ Q codeword

OO00000

Intuition (3)

e Visualization of code:

(OO) _ valid

Single

t}it error\ Q .ﬁodeword
rom A

OO0
Three bit Q Q Q Q\ Error
Egrgfc)ﬁ) to OO @ O codeword

Hamming Code

* Gives a method for constructing a code with a
distance of 3
e Usesn=2K—k-— 1, e.g., n=4, k=3
* Put check bits in positions p that are powers of 2, starting
with position 1
* N-th check bit is parity of bit positions with n-th LSBit is
same as p’s

* Plus an easy way to correct [soon]

Cheat sheet

Hamming Code (2) 1: 0001
2:0010
* Example: data=0101, 3 check bits iﬁ 8(1)3(1)
* 7 bit code, check bit positions 1, 2, 4 5 0101
* Check 1 covers positions 1, 3,5, 7 (LSB is 1) 6: 0110
* Check 2 covers positions 2, 3,6, 7 (2" LSBis1) 7:0111

* Check 4 covers positions 4, 5, 6, 7 (3™ LSB is 1)

0100101

p1=0+1+1=0, p,=0+0+1=1, py=1+0+1=0

CSE 461 University of Washington 33

Hamming Code (3)

* To decode:

* Recompute check bits (with parity sum including the
check bit)

* Arrange as a binary number

* Value (syndrome) tells error position
* VValue of zero means no error

* Otherwise, flip bit to correct

Hamming Code (5)

* Example, continued
— 0100101

P1= Pr=
Pg=

Syndrome =
Data =

Hamming Code (6)

* Example, continued
— 0100101

p1=0+0+1+1 =0, p,=1+0+0+1=0,
ps=0+1+0+1=0

Syndrome = 000, no error
Data=0101

Hamming Code (7)

* Example, continued
— 0100111

P1= Pr=
Pg=

Syndrome =
Data =

Hamming Code (8)

* Example, continued
— 0100111

p1=0+0+1+1 =0, p,=1+0+1+1=1,
ps=0+1+1+1=1

Syndrome =1 10, flip position 6
Data =01 01 (correct after flip!)

Hamming Code (3)

* Example: bad message 0100111
7 bit code, check bit positions 1, 2, 4
* Check 1 covers positions 1, 3,5, 7
* Check 2 covers positions 2, 3, 6, 7
* Check 4 covers positions 4, 5, 6, 7

0100111 —

p;=0+0+1+41=0, p,=1+0+1+1=1, py,=0+1+1+1=1

Hamming Code (3)

* Example: bad message 0100111

7 bit code, check bit positions 1, 2, 4
* Check 1 covers positions 1, 3, 5, 7

* Check 2 covers positions 2, 3 @ 7/

* Check 4 covers positions 4, 5)\6) 7

0100111 —

p;=0+0+1+41=0, p,=1+0+1+1=1, py,=0+1+1+1=1

Other Error Correction Codes

* Real codes are more involved than Hamming

*E.g., Convolutional codes (§3.2.3)

* Take a stream of data and output a mix of the input bits

* Makes each output bit less fragile

* Decode using Viterbi algorithm (uses bit confidence values)
00 >/100 -
01 01
10K/ 10k~
T —>11

Detection vs. Correction

* Which is better will depend on the pattern of errors.
For example:
* 1000 bit messages with a bit error rate (BER) of 1 in 10000

* Which has less overhead?

Detection vs. Correction

* Which is better will depend on the pattern of errors.
For example:
* 1000 bit messages with a bit error rate (BER) of 1 in 10000

* Which has less overhead?
* It still depends! We need to know more about the errors

Detection vs. Correction (2)

Assume bit errors are random
* Messages have 0 or maybe 1 error (1/10 of the time)

Error correction:
* Need ~10 check bits per message

* Overhead:
* 10 bits per message

Error detection:
* Need ~1 check bits per message plus 1000 bit retransmission

* Overhead:
e 101 bits per message

Detection vs. Correction (3)

Assume errors come in bursts of 100
* Only 1 or 2 messages in 1000 have significant (multi-bit) errors

Error correction:
* Need >>100 check bits per message

e Overhead:
 >>100 bpm

Error detection:
* Need 32 check bits per message plus 1000 bit resend 2/1000 of the time

* Overhead:
* 34 bits per message

Detection vs. Correction (4)

 Error correction:
* Needed when errors are expected
e Or when no time for retransmission

* Error detection:
* More efficient when errors are not expected
 And when errors are large when they do occur

Error Correction In Practice

* Heavily used in physical layer
* Used for demanding links like 802.11, DVB, WiMAX, power-line, ...
* Convolutional codes widely used in practice

* Error detection (w/ retransmission) is used in the link layer and above
for residual errors

* Correction also used in the application layer
e Called Forward Error Correction (FEC)

* Normally with an erasure error model
e E.g., Reed-Solomon (CDs, DVDs, etc.)

Error Correction in Practice (2)

* Everywhere! It is a key issue
* Different layers contribute differently

Application Recover actions
(correctness)
Transport A
Network
Link
: Mask errors
Physical 2 .
(performance optimization)

