
Link Layer: Error detection and 
correction



Problem: Noise may Flip Received Bits

• Link layers provides some protection
• Detect errors with codes
• Correct errors with codes
• Retransmit lost frames

•Reliability concern cuts across the layers
• E.g, TCP in the transport layer, DNS in the app layer

CSE 461 University of Washington 2

Later



Problem: Noise may Flip Received Bits 
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Approach – Add Redundancy 

•Error detection codes: Add check bits to the message bits 
to let some errors be detected
•Error correction codes: Add more check bits to let some 

errors be corrected

•Key issue: Structure the code such that 
• Need few check bits to detect/correct many errors
•Modest computation
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Motivating Example

•A simple code to handle errors:
• Send two copies! Error detected if different.

•How good is this code?
• How many errors can it detect/correct?
• How many errors will make it fail?
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Want to Handle More Errors w/ Fewer Bits

•We’ll look at better codes (applied mathematics)
• But, they can’t handle all errors
• And they focus on accidental (random) errors
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Using Error Codes

•Codeword consists of D data plus R check bits 
(=systematic block code)

•Sender: 
• Compute R check bits based on the D data bits; send the 

codeword of D+R bits
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D R=fn(D)

Data bits Check bits



Using Error Codes (2)

•Receiver:  
• Receive D+R bits with unknown errors
• Recompute R check bits based on the D data bits
• Error detected if R doesn’t match R’
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D R’
Data bits Check bits

R=fn(D)
=?



Intuition for Error Codes

•For D data bits, R check bits:

•Randomly chosen D+R bits is unlikely to be correct
• Low, controllable overhead
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All possible D+R bits

Correct codewords
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R.W. Hamming (1915-1998)

•Much early work on codes:
• “Error Detecting and Error Correcting 

Codes”, BSTJ, 1950

•See also:
• “You and Your Research”, 1986

Source: IEEE GHN, © 2009 IEEE



Hamming Distance

•Distance is the number of bit flips needed to change 
D1 to D2

•Hamming distance of a coding is the minimum error 
distance between any pair of codewords (bit-strings) 
that cannot be detected
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Hamming Distance (2)

•Error detection:
• For a coding of distance d+1, up to d errors will always be 

detected
•Error correction:
• For a coding of distance 2d+1, up to d errors can always 

be corrected by mapping to the closest valid codeword
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Simple Error Detection – Parity Bit

•Take D data bits, add 1 check bit
• Check bit could be sum modulo 2 or XOR
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Parity Bit (2)

•How well does parity work?
•What is the distance of the code?
• How many errors will it detect/correct?

•What about larger errors?
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Checksums

• Idea: sum up data in N-bit words
•Widely used in, e.g., TCP/IP/UDP

•Stronger protection than parity
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1500 bytes 16 bits



Internet Checksum

•Sum is defined in 1s complement arithmetic (must 
add back carries)
• And it’s the negative sum

• “The checksum field is the 16 bit one's complement of the 
one's complement sum of all 16 bit words …” – RFC 791
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Internet Checksum (2)
Sending:
1.Arrange data in 16-bit words
2.Put zero in checksum position, add
3.Add any carryover back to get 16 bits
4.Negate (complement) to get sum

0001 
f204 
f4f5 
f6f7 

+(0000)
------
2ddf0 

ddf0 
+    2 
------
ddf2 

220d 



CSE 461 University of Washington 18

Internet Checksum (3)
0001 
f204 
f4f5 
f6f7 

+(0000)
------
2ddf1 

ddf1 
+    2 
------
ddf3 

220c 

Sending:
1.Arrange data in 16-bit words
2.Put zero in checksum position, add
3.Add any carryover back to get 16 bits
4.Negate (complement) to get sum
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Internet Checksum (4)
Receiving:
1. Arrange data in 16-bit words
2. Checksum will be non-zero, add
3. Add any carryover back to get 16 bits
4. Negate the result and check it is 0

0001 
f204 
f4f5 
f6f7 

+ 220c 
------
2fffd 

fffd
+    2 
------
ffff

0000 
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Internet Checksum (5)
Receiving:
1. Arrange data in 16-bit words
2. Checksum will be non-zero, add
3. Add any carryover back to get 16 bits
4. Negate the result and check it is 0

0001 
f204 
f4f5 
f6f7 

+ 220c 
------
2fffd 

fffd
+    2 
------
ffff

0000 



Internet Checksum (6)

•How well does the checksum work?
•What is the distance of the code?
• How many errors will it detect/correct?
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Why Error Correction is Hard

• If we had reliable check bits we could use them to 
narrow down  the position of the error
• Then correction would be easy

•But error could be in the check bits as well as the 
data bits!
• Data might even be correct 
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Intuition for Error Correcting Code

•Suppose we construct a code with a Hamming 
distance of at least 3
• Need ≥3 bit errors to change one valid codeword into 

another
• Single bit errors will be closest to a unique valid codeword

• If we assume errors are only 1 bit, we can correct 
mapping an error to the closest valid codeword
•Works for d errors if HD ≥ 2d + 1
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Intuition (2)

• Visualization of code:
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Intuition (3)

• Visualization of code:
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Hamming Code

•Gives a method for constructing a code with a 
distance of 3
• Uses n = 2k – k – 1, e.g., n=4, k=3
• Put check bits in positions p that are powers of 2, starting 

with position 1
• N-th check bit is parity of bit positions with n-th LSBit is 

same as p’s 
•Plus an easy way to correct [soon]
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Hamming Code (2)

•Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7 (LSB is 1)
• Check 2 covers positions 2, 3, 6, 7 (2nd LSB is 1)
• Check 4 covers positions 4, 5, 6, 7 (3rd LSB is 1)
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_ _ _  _ _  _  _
1   2   3   4   5   6   7

Cheat sheet
1: 0001
2: 0010
3: 0011
4: 0100
5: 0101
6: 0110
7: 0111

0 1 0  0 1  0  1

p1= 0+1+1 = 0,  p2= 0+0+1 = 1,  p4= 1+0+1 = 0



Hamming Code (3)

•To decode:
• Recompute check bits (with parity sum including the 

check bit)
• Arrange as a binary number
• Value (syndrome) tells error position
• Value of zero means no error
• Otherwise, flip bit to correct

CSE 461 University of Washington 34



Hamming Code (5)

•Example, continued
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0 1 0  0 1  0  1

p1=                             p2= 
p4=  

Syndrome =  
Data =

1   2   3   4   5   6   7



Hamming Code (6)

•Example, continued
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0 1 0  0 1  0  1

p1= 0+0+1+1 = 0,   p2= 1+0+0+1 = 0,
p4= 0+1+0+1 = 0

Syndrome = 000, no error
Data = 0 1 0 1

1   2   3   4   5   6   7



Hamming Code (7)

•Example, continued
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0 1 0  0 1  1 1

p1=                             p2= 
p4=  

Syndrome =  
Data =

1   2   3   4   5   6   7



Hamming Code (8)

•Example, continued
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0 1 0  0 1  1 1

p1= 0+0+1+1 = 0,   p2= 1+0+1+1 = 1,
p4= 0+1+1+1 = 1

Syndrome = 1 1 0, flip position 6
Data = 0 1 0 1 (correct after flip!)

1   2   3   4   5   6   7



Hamming Code (3)

•Example: bad message 0100111
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7
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0  1  0  0  1  1 1

p1= 0+0+1+1 = 0,  p2= 1+0+1+1 = 1,  p4= 0+1+1+1 = 1
1   2   3   4   5   6   7



Hamming Code (3)

•Example: bad message 0100111
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7
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0  1  0  0  1  1 1

p1= 0+0+1+1 = 0,  p2= 1+0+1+1 = 1,  p4= 0+1+1+1 = 1
1   2   3   4   5   6   7



Other Error Correction Codes

•Real codes are more involved than Hamming
•E.g., Convolutional codes (§3.2.3)
• Take a stream of data and output a mix of the input bits
•Makes each output bit less fragile
• Decode using Viterbi algorithm (uses bit confidence values)
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Detection vs. Correction

•Which is better will depend on the pattern of errors. 
For example:
• 1000 bit messages with a bit error rate (BER) of 1 in 10000

•Which has less overhead?
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Detection vs. Correction

•Which is better will depend on the pattern of errors. 
For example:
• 1000 bit messages with a bit error rate (BER) of 1 in 10000

•Which has less overhead?
• It still depends! We need to know more about the errors
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Detection vs. Correction (2)

Assume bit errors are random
• Messages have 0 or maybe 1 error (1/10 of the time)

Error correction: 
• Need ~10 check bits per message
• Overhead: 

• 10 bits per message

Error detection: 
• Need ~1 check bits per message plus 1000 bit retransmission 
• Overhead:

• 101 bits per message
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Detection vs. Correction (3)

Assume errors come in bursts of 100
• Only 1 or 2 messages in 1000 have significant (multi-bit) errors

Error correction: 
• Need >>100 check bits per message
• Overhead:

• >> 100 bpm

Error detection: 
• Need 32 check bits per message plus 1000 bit resend 2/1000 of the time
• Overhead:

• 34 bits per message
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Detection vs. Correction (4)

• Error correction: 
• Needed when errors are expected
• Or when no time for retransmission

• Error detection: 
• More efficient when errors are not expected
• And when errors are large when they do occur
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Error Correction in Practice

• Heavily used in physical layer
• Used for demanding links like 802.11, DVB, WiMAX, power-line, …
• Convolutional codes widely used in practice

• Error detection (w/ retransmission) is used in the link layer and above 
for residual errors

• Correction also used in the application layer
• Called Forward Error Correction (FEC)
• Normally with an erasure error model
• E.g., Reed-Solomon (CDs, DVDs, etc.)
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Error Correction in Practice (2)

•Everywhere! It is a key issue
• Different layers contribute differently
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Recover actions
(correctness)

Mask errors
(performance optimization)

Physical

Link

Network

Transport

Application


