
Link Layer: Error detection and
correction

Problem: Noise may Flip Received Bits

• Link layers provides some protection
• Detect errors with codes
• Correct errors with codes
• Retransmit lost frames

•Reliability concern cuts across the layers
• E.g, TCP in the transport layer, DNS in the app layer

CSE 461 University of Washington 2

Later

Problem: Noise may Flip Received Bits

CSE 461 University of Washington 3

Signal
0 0 0 0

11 1
0

0 0 0 0
11

0 0

0 0
1

0 10
1

0

Slightly
Noisy

Very
noisy

Ideas?

Approach – Add Redundancy

•Error detection codes: Add check bits to the message bits
to let some errors be detected
•Error correction codes: Add more check bits to let some

errors be corrected

•Key issue: Structure the code such that
• Need few check bits to detect/correct many errors
•Modest computation

CSE 461 University of Washington 4

Motivating Example

•A simple code to handle errors:
• Send two copies! Error detected if different.

•How good is this code?
• How many errors can it detect/correct?
• How many errors will make it fail?

CSE 461 University of Washington 5

Want to Handle More Errors w/ Fewer Bits

•We’ll look at better codes (applied mathematics)
• But, they can’t handle all errors
• And they focus on accidental (random) errors

CSE 461 University of Washington 6

Using Error Codes

•Codeword consists of D data plus R check bits
(=systematic block code)

•Sender:
• Compute R check bits based on the D data bits; send the

codeword of D+R bits

CSE 461 University of Washington 7

D R=fn(D)

Data bits Check bits

Using Error Codes (2)

•Receiver:
• Receive D+R bits with unknown errors
• Recompute R check bits based on the D data bits
• Error detected if R doesn’t match R’

CSE 461 University of Washington 8

D R’
Data bits Check bits

R=fn(D)
=?

Intuition for Error Codes

•For D data bits, R check bits:

•Randomly chosen D+R bits is unlikely to be correct
• Low, controllable overhead

CSE 461 University of Washington 9

All possible D+R bits

Correct codewords

CSE 461 University of Washington 10

R.W. Hamming (1915-1998)

•Much early work on codes:
• “Error Detecting and Error Correcting

Codes”, BSTJ, 1950

•See also:
• “You and Your Research”, 1986

Source: IEEE GHN, © 2009 IEEE

Hamming Distance

•Distance is the number of bit flips needed to change
D1 to D2

•Hamming distance of a coding is the minimum error
distance between any pair of codewords (bit-strings)
that cannot be detected

CSE 461 University of Washington 11

Hamming Distance (2)

•Error detection:
• For a coding of distance d+1, up to d errors will always be

detected
•Error correction:
• For a coding of distance 2d+1, up to d errors can always

be corrected by mapping to the closest valid codeword

CSE 461 University of Washington 12

Simple Error Detection – Parity Bit

•Take D data bits, add 1 check bit
• Check bit could be sum modulo 2 or XOR

CSE 461 University of Washington 13

Parity Bit (2)

•How well does parity work?
•What is the distance of the code?
• How many errors will it detect/correct?

•What about larger errors?

CSE 461 University of Washington 14

Checksums

• Idea: sum up data in N-bit words
•Widely used in, e.g., TCP/IP/UDP

•Stronger protection than parity

CSE 461 University of Washington 15

1500 bytes 16 bits

Internet Checksum

•Sum is defined in 1s complement arithmetic (must
add back carries)
• And it’s the negative sum

• “The checksum field is the 16 bit one's complement of the
one's complement sum of all 16 bit words …” – RFC 791

CSE 461 University of Washington 16

CSE 461 University of Washington 17

Internet Checksum (2)
Sending:
1.Arrange data in 16-bit words
2.Put zero in checksum position, add
3.Add any carryover back to get 16 bits
4.Negate (complement) to get sum

0001
f204
f4f5
f6f7

+(0000)

2ddf0

ddf0
+ 2

ddf2

220d

CSE 461 University of Washington 18

Internet Checksum (3)
0001
f204
f4f5
f6f7

+(0000)

2ddf1

ddf1
+ 2

ddf3

220c

Sending:
1.Arrange data in 16-bit words
2.Put zero in checksum position, add
3.Add any carryover back to get 16 bits
4.Negate (complement) to get sum

CSE 461 University of Washington 19

Internet Checksum (4)
Receiving:
1. Arrange data in 16-bit words
2. Checksum will be non-zero, add
3. Add any carryover back to get 16 bits
4. Negate the result and check it is 0

0001
f204
f4f5
f6f7

+ 220c

2fffd

fffd
+ 2

ffff

0000

CSE 461 University of Washington 20

Internet Checksum (5)
Receiving:
1. Arrange data in 16-bit words
2. Checksum will be non-zero, add
3. Add any carryover back to get 16 bits
4. Negate the result and check it is 0

0001
f204
f4f5
f6f7

+ 220c

2fffd

fffd
+ 2

ffff

0000

Internet Checksum (6)

•How well does the checksum work?
•What is the distance of the code?
• How many errors will it detect/correct?

CSE 461 University of Washington 21

Why Error Correction is Hard

• If we had reliable check bits we could use them to
narrow down the position of the error
• Then correction would be easy

•But error could be in the check bits as well as the
data bits!
• Data might even be correct

CSE 461 University of Washington 28

Intuition for Error Correcting Code

•Suppose we construct a code with a Hamming
distance of at least 3
• Need ≥3 bit errors to change one valid codeword into

another
• Single bit errors will be closest to a unique valid codeword

• If we assume errors are only 1 bit, we can correct
mapping an error to the closest valid codeword
•Works for d errors if HD ≥ 2d + 1

CSE 461 University of Washington 29

Intuition (2)

• Visualization of code:

CSE 461 University of Washington 30

A

B

Valid
codeword

Error
codeword

Intuition (3)

• Visualization of code:

CSE 461 University of Washington 31

A

B

Valid
codeword

Error
codeword

Single
bit error
from A

Three bit
errors to
get to B

Hamming Code

•Gives a method for constructing a code with a
distance of 3
• Uses n = 2k – k – 1, e.g., n=4, k=3
• Put check bits in positions p that are powers of 2, starting

with position 1
• N-th check bit is parity of bit positions with n-th LSBit is

same as p’s
•Plus an easy way to correct [soon]

CSE 461 University of Washington 32

Hamming Code (2)

•Example: data=0101, 3 check bits
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7 (LSB is 1)
• Check 2 covers positions 2, 3, 6, 7 (2nd LSB is 1)
• Check 4 covers positions 4, 5, 6, 7 (3rd LSB is 1)

CSE 461 University of Washington 33

_ _ _ _ _ _ _
1 2 3 4 5 6 7

Cheat sheet
1: 0001
2: 0010
3: 0011
4: 0100
5: 0101
6: 0110
7: 0111

0 1 0 0 1 0 1

p1= 0+1+1 = 0, p2= 0+0+1 = 1, p4= 1+0+1 = 0

Hamming Code (3)

•To decode:
• Recompute check bits (with parity sum including the

check bit)
• Arrange as a binary number
• Value (syndrome) tells error position
• Value of zero means no error
• Otherwise, flip bit to correct

CSE 461 University of Washington 34

Hamming Code (5)

•Example, continued

CSE 461 University of Washington 35

0 1 0 0 1 0 1

p1= p2=
p4=

Syndrome =
Data =

1 2 3 4 5 6 7

Hamming Code (6)

•Example, continued

CSE 461 University of Washington 36

0 1 0 0 1 0 1

p1= 0+0+1+1 = 0, p2= 1+0+0+1 = 0,
p4= 0+1+0+1 = 0

Syndrome = 000, no error
Data = 0 1 0 1

1 2 3 4 5 6 7

Hamming Code (7)

•Example, continued

CSE 461 University of Washington 37

0 1 0 0 1 1 1

p1= p2=
p4=

Syndrome =
Data =

1 2 3 4 5 6 7

Hamming Code (8)

•Example, continued

CSE 461 University of Washington 38

0 1 0 0 1 1 1

p1= 0+0+1+1 = 0, p2= 1+0+1+1 = 1,
p4= 0+1+1+1 = 1

Syndrome = 1 1 0, flip position 6
Data = 0 1 0 1 (correct after flip!)

1 2 3 4 5 6 7

Hamming Code (3)

•Example: bad message 0100111
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

CSE 461 University of Washington 39

0 1 0 0 1 1 1

p1= 0+0+1+1 = 0, p2= 1+0+1+1 = 1, p4= 0+1+1+1 = 1
1 2 3 4 5 6 7

Hamming Code (3)

•Example: bad message 0100111
• 7 bit code, check bit positions 1, 2, 4
• Check 1 covers positions 1, 3, 5, 7
• Check 2 covers positions 2, 3, 6, 7
• Check 4 covers positions 4, 5, 6, 7

CSE 461 University of Washington 40

0 1 0 0 1 1 1

p1= 0+0+1+1 = 0, p2= 1+0+1+1 = 1, p4= 0+1+1+1 = 1
1 2 3 4 5 6 7

Other Error Correction Codes

•Real codes are more involved than Hamming
•E.g., Convolutional codes (§3.2.3)
• Take a stream of data and output a mix of the input bits
•Makes each output bit less fragile
• Decode using Viterbi algorithm (uses bit confidence values)

CSE 461 University of Washington 41

Detection vs. Correction

•Which is better will depend on the pattern of errors.
For example:
• 1000 bit messages with a bit error rate (BER) of 1 in 10000

•Which has less overhead?

CSE 461 University of Washington 44

Detection vs. Correction

•Which is better will depend on the pattern of errors.
For example:
• 1000 bit messages with a bit error rate (BER) of 1 in 10000

•Which has less overhead?
• It still depends! We need to know more about the errors

CSE 461 University of Washington 45

Detection vs. Correction (2)

Assume bit errors are random
• Messages have 0 or maybe 1 error (1/10 of the time)

Error correction:
• Need ~10 check bits per message
• Overhead:

• 10 bits per message

Error detection:
• Need ~1 check bits per message plus 1000 bit retransmission
• Overhead:

• 101 bits per message

CSE 461 University of Washington 46

Detection vs. Correction (3)

Assume errors come in bursts of 100
• Only 1 or 2 messages in 1000 have significant (multi-bit) errors

Error correction:
• Need >>100 check bits per message
• Overhead:

• >> 100 bpm

Error detection:
• Need 32 check bits per message plus 1000 bit resend 2/1000 of the time
• Overhead:

• 34 bits per message

CSE 461 University of Washington 47

Detection vs. Correction (4)

• Error correction:
• Needed when errors are expected
• Or when no time for retransmission

• Error detection:
• More efficient when errors are not expected
• And when errors are large when they do occur

CSE 461 University of Washington 48

Error Correction in Practice

• Heavily used in physical layer
• Used for demanding links like 802.11, DVB, WiMAX, power-line, …
• Convolutional codes widely used in practice

• Error detection (w/ retransmission) is used in the link layer and above
for residual errors

• Correction also used in the application layer
• Called Forward Error Correction (FEC)
• Normally with an erasure error model
• E.g., Reed-Solomon (CDs, DVDs, etc.)

CSE 461 University of Washington 49

Error Correction in Practice (2)

•Everywhere! It is a key issue
• Different layers contribute differently

CSE 461 University of Washington 50

Recover actions
(correctness)

Mask errors
(performance optimization)

Physical

Link

Network

Transport

Application

