Link Layer

Link Layer

* Transfer frames over one or more connected links
* Frames are messages of limited size
* Builds on the physical layer which moves stream of bits

Frame >

In terms of layers ...

Sending machine Receiving machine
Network Packet Packet
l A
Link
Physical L Actual data path J

~
P

CSE 461 University of Washington

In terms of layers ...

Sending machine

Receiving machine

Network Packet Packet
Frame ‘
Y
Link Header | Payload field Trailer Header | Payload field Trailer
\ Virtual data path f
| |
Physical L Actual data path J

CSE 461 University of Washington

~
P

Typical Implementation of Layers (2)

@plicat@

Computer

P Operating System
Network
! Driver
Link
. Network Interface
ke L Card (NIC)
PHY
—_

Cable (medium)

CSE 461 University of Washington

Topics we'll cover

1. Framing
* Delimiting start/end of frames

2. Error detection and correction
e Handling errors

3. Retransmissions
* Handling loss

4. Multiple Access
 802.11, classic Ethernet

5. Switching
e Modern Ethernet

Framing

Delimiting start/end of frames

Framing: Problem

* How do we interpret a stream of bits as a sequence

of frames?

..10110 ...

U
|

Framing Methods

Fixed-size frames (motivation)
Byte count (motivation)

Byte stuffing

Bit stuffing

B W

* In practice, the physical layer often helps to identify frame boundaries
e E.g., Ethernet, 802.11

1. Fixed-size frames

* Make every frame a fixed number of bits
* Pad smaller frames

* Problems?
* Wasted transmissions for small frames

2. Byte Count

e Start each frame with a length field

£

-

\ Byte count
918

213|14|5 8 0112 3|4 81718(9|0[1]12]3
Frame 1 Frame 2 Frame 3 Frame 4
5 bytes 5 bytes 8 bytes 8 bytes

* Problems?

CSE 461 University of Washington

11

2. Byte Count: Problem

* Difficult to re-synchronize after framing error
* Want a way to scan for a start of frame

Error

Frame 1 Frame 2 Now a byte
(Wrong) count

CSE 461 University of Washington 12

3. Byte Stuffing

* A special flag byte value for start/end of frame
* Replace (“stuff”) the flag with an escape code

FLAG| Header Payload field Trailer |FLAG

* Problems?

3. Byte Stuffing: Problem

* Must escape the escape code too! Rules:
* Replace each FLAG in data with ESC FLAG
* Replace each ESC in data with ESC ESC

Original bytes After stuffing * Now any unescaped FLAG
A ||FLac|| B — | A ||esc||FLac|| B denotes frame start/end
A ESC B - A ESC ESC B

A ESC | |FLAG|| B | — A ESC ||ESC | | ESC | |[FLAG| | B

A ESC | | ESC B | — A ESC ||ESC || ESC || ESC B

CSE 461 University of Washington 14

Unstuffing

You see:

Solitary FLAG?
Solitary ESC?

ESC FLAG?

ESC ESC FLAG?
ESC ESC ESC FLAG?
ESC FLAG FLAG?

A A A

What it means

-> Start or end of packet

-> Bad packet!

-> remove ESC and pass FLAG through

-> removed ESC and then start of end of packet
-> pass ESC FLAG through

-> pass FLAG through then start of end of packet

4. Bit Stuffing

e Can stuff at the bit level too

* Call a flag six consecutive 1s
* On transmit, after five 1s in the data, inserta O
 On receive, a 0 after five 1s is deleted

Databits: 011011111111111111110010

Transmitted bits 4 4 54 4 1 41041111011111010010

with stuffing \ T /

Stuffed bits

Link Example: PPP over SONET

* PPP is Point-to-Point Protocol
* Widely used for link framing

e E.g., itis used to frame IP packets that are sent over SONET optical links

Link Example: PPP over SONET (2)

* Think of SONET as a bit stream, and PPP as the framing that carries an
IP packet over the link

Router

IP packet

PPP frame

#

#

SONET payload

SONET payload

I= I=
PPP PPP
SONET]Sl’bpgirca' SONET

Protocol stacks

CSE 461 University of Washington

PPP frames may be split over
SONET payloads

18

Link Example: PPP over SONET (3)

* Framing uses byte stuffing
* FLAG is 0x7E and ESC is 0x7D

Bytes

1 1 1 1or2 Variable 20r4 1
-
Flag Address Control Protocol | Payload | Checksum Flag

01111110

11111111

00000011

((
)])

01111110

CSE 461 University of Washington

19

Link Example: PPP over SONET (4)

* Byte stuffing method:

e To stuff (unstuff) a byte
* add (remove) ESC (0x7D)
e and XOR byte with 0x20

« Removes FLAG from the contents of the frame

