TCP contd.
(connection release, flow control)

CSE 461, Spring 2021
Ratul Mahajan

Connection Release

* Orderly release by both parties when done
* Delivers all pending data and “hangs up”
* Cleans up state in sender and receiver

* Key problem is to provide reliability while releasing

* TCP uses a “symmetric” close in which both sides
shutdown independently

TCP Connection Release

e TWO Ste S Active party Passive party

* Active sends FIN(x), passive ACKs
* Passive sends FIN(y), active ACKs
* FINs are retransmitted if lost

* Each FIN/ACK closes one direction
of data transfer

TCP Connection Release (2)

e TWO Ste S Active party Passive party
* Active sends FIN(x), passive ACKs

FIN (SEQ
* Passive sends FIN(y), active ACKs W}

* FINs are retransmitted if lost (SEORY ek

V ACK=X+ 1\

\S\:—OF/
* Each FIN/ACK closes one direction V

of data transfer BEQ=x+1, Ackey

TCP Connection State Machine

{ ESTABLISHED
|
)
|
CLOSE/FIN J FINJACK
((Active close) (Passiv~e\, close)
== Se==ss=messmems = _—— _—— - 1 r =
| I]
. | '
I FINJACK
Both parties | — N ooE
. WAIT 1 CLOSING WAIT
run instances) ,
. ACK/—- ACK/- I | CLOSE/FIN
of this state | e Ak]] ;
+
machine Jo ~ | oME | oK
P f |
WAIT 2 FINACK WAIT i .
i _] . e
(Timeout/) :
y 1
CLOSED |ecccmcee- e /!

(Go back to start)

CSE 461 University of Washington 5

———— ———— — ————— — ——— — —

TCP Release

* Follow the active party

| ESTABLISHED

i

CLOSE/FIN FINJACK
(Active close) (Passive\sclose)
i'- s 1 r :— =
i FIN FINACK CL(g)SE
WAIT 1 CLOSING WAIT
i
ACK/~ ACK/~ i CLOSE/FIN
I
\] I !
FIN + ACK/IACK
FIN - TIME L:&T
- f
WAIT 2 FINJACK WAIT .
- i L o
(Timeout/) 1:
/ I
CLOSED |=-cncmmn- S 4
(Go back to start)
CSE 461 University of Washington 6

TCP Release (2)

* Follow the passive party

| ESTABLISHED

i

-

CLOSE/FIN FIN/ACK
(Active close) (Passive\sclose)
| FIN FINACK CL(!)SE
WAIT 1 CLOSING WAIT
i
ACK/- ACK/~- i CLOSE/FIN
I
\] I !
FIN + ACK/IACK
FIN - TIME L,(‘éf
- f
WAIT 2 FINJACK WAIT .
~ ‘ I N |
(Timeout/) !
/ I
CLOSED |=-mmmmmm-e it S /!
(Go back to start)
CSE 461 University of Washington 7

TCP Release (3)

* Again, with states ...

ESTABLISHED
FIN._WAIT 1

FIN_WAIT 2

TIME_WAIT

(timeout)
CLOSED

Active party

F

Passive party

IN (SEQ:x)

\

K:x-\— 1\

&SEQ=V1 A C

ESTABLISHED

CLOSE_WAIT

LAST ACK

CLOSED

TIME_WAIT State

* Wait a long time after sending all segments and
before completing the close
* Two times the maximum segment lifetime of 60 seconds

e Why?

TIME_WAIT State

* Wait a long time after sending all segments and
before completing the close
* Two times the maximum segment lifetime of 60 seconds

e Why?
* ACK might have been lost, in which case FIN will be resent
for an orderly close

* Could otherwise interfere with a subsequent connection

Flow Control

Flow control goal

Match transmission speed to reception capacity
e Otherwise data will be lost

ARQ: Automatic repeat query
* ARQ with one message at a time is Stop-and-Wait

Sender Receiver
Frame O

\

Timeout ACK 0 Time

ACK 1

Limitation of Stop-and-Wait

* |t allows only a single message to be outstanding
from the sender:

* Fine for LAN (only one frame fits in network anyhow)
* Not efficient for network paths with longer delays

[1]

]

Limitation of Stop-and-Wait (2)

* Example: B=1 Mbps, D =50 ms
* RTT (Round Trip Time) = 2D = 100 ms
 How many packets/sec?
10
* Usage efficiency if packets are 10kb?
* (10,000 x 10) / (1 x 10°) = 10%

* What is the efficiency if B=10 Mbps?
* 1%

Sliding Window

* Generalization of stop-and-wait

* Allows W packets to be outstanding
e Can send W packets per RTT (=2D)

R

* Pipelining improves performance
* Need W=2BD to fill network path

Sliding Window (2)
What W will use the network capacity with 10kb packets?

* Ex: B=1 Mbps, D =50 ms
*« 2BD =2 x 10° x 50/1000 = 100 Kb
* W =100 kb/10 = 10 packets

* Ex: What if B=10 Mbps?
* W =100 packets

Sliding Window Protocol

* Many variations, depending on how buffers,

acknowledgements, and retransmissions are
handled

* Go-Back-N
e Simplest version, can be inefficient

*Selective Repeat
* More complex, better performance

Sender Sliding Window

* Sender buffers up to W segments until they are
acknowledged

e L FS=LAST FRAME SENT, LAR=LAST ACK REC'D
e Sends while LFS— LAR<W

Sliding W=5 _
Window /Avallable
Ackedl Unacked Unavailable | ..
| ! ,

LAR LFS seq. number

Sender Sliding Window (2)

* Transport accepts another segment of data from the
Application ...
* Transport sends it (LFS—LAR —> 5)

Sliding W=5
Window /Sent
Ackedl WUnacked Unavailable | ..
! | X

LAR LFS seq. number

Sender Sliding Window (3)

* Next higher ACK arrives from peer...

 Window advances, buffer is freed
* LFS—LAR = 4 (can send one more)

le.

N

Sliding W=5 .
Window /Avallable
Ackedl Unacke Unavai‘lat
T T ,
LAR LFS seq. number

Receiver Sliding Window — Go-Back-N

* Receiver keeps only a single packet buffer for the
next segment
e State variable, LAS = LAST ACK SENT

* On receive:

* If seq. number is LAS+1, accept and pass it to app, update
LAS, send ACK

e Otherwise discard (as out of order)

Receiver Sliding Window — Selective Repeat

* Receiver passes data to app in order, and buffers out-of-
order segments to reduce retransmissions

* ACK conveys highest in-order segment, plus hints about out-
of-order segments

* Ex: | got everything up to 42 (LAS), and got 44, 45

* TCP uses a selective repeat design; we’ll see the details later

Receiver Sliding Window — Selective Repeat (2)

* Buffers W segments, keeps state variable LAS = LAsT
ACK SENT

*On receive:
* Buffer segments [LAS+1, LAS+W]
* Send app in-order segments from LAS+1, and update LAS
* Send ACK for LAS regardless

Sender Sliding Window — Selective Repeat

* Keep normal sliding window

 |f out-of-order ACK arrives
e Send LAR+1 again!

W=5
SI.Idmg Ack Arrives Out of Order!
Window
Ackedl Unacked | \Unavailable.
! |

N

LAR LFS seq. number

Sender Sliding Window — Selective Repeat (2)

* Keep normal sliding window

* If in-order ACK arrives

* Move window and LAR, send more messages
W=5

S!iding In-order ack arrives...
Window / , Now Available
Ackedl Unacked | | “
! X
LAR LFS seq. number

Sliding Window — Retransmissions

* Go-Back-N uses a single timer to detect losses
* On timeout, resends buffered packets starting at LAR+1

* Selective Repeat uses a timer per unacked segment
to detect losses

* On timeout for segment, resend it
* Hope to resend fewer segments

Sequence Numbers

Need more than 0/1 for Stop-and-Wait ... but how many?
* For Selective Repeat: 2W seq numbers
* W for packets, plus W for earlier acks
* For Go-Back-N: W+1 sequence numbers

Typically implement seq. number with an N-bit counter that
wraps around at 2N—1

*E.g., N=8: .., 253,254, 255,0,1, 2,3, ..

Sequence Time Plot

Transmissions

(at Sender) \

\ Acks

(at Receiver)

Seq. Number

Delay (=RTT/2)

Time

N
7

Seq. Number

Sequence Time Plot (2)

Go-Back-N scenario

Time

v

Sequence Time Plot (3)

Retransm|55|ons

\@ /

Timeout

Seq. Number

Time

v

TCP recap

Three phases
1. Connection setup

2. Data transfer

 Flow control — don’t overwhelm the receiver
* ARQ - one outstanding packet

* Go-back-N, selective repeat -- sliding window of W packets
* Tuning flow control (ack clocking, RTT estimation)

e Congestion control

3. Connection release

ACK Clocking

Sliding Window ACK Clock

* Typically, the sender does not know B or D

* Each new Ack advances the sliding window and lets
a new segment enter the network
* ACKs “clock” data segments

2019181716151413 12 11 Data

i_:

10

I Lniylyy!
567829

Ack1l 2 3 4

Benefit of ACK Clocking

* Consider what happens when sender injects a burst
of segments into the network

Fast link Slow (bottleneck) Imk Fast link

CSE 461 University of Washington

35

Benefit of ACK Clocking (2)

* Segments are buffered and spread out on slow link

!

Segments

——

Fast link

Slow (bottleneck) link

CSE 461 University of Washington

“spread out”
A
(\
—> %_
\/

Fast link

==

36

Benefit of ACK Clocking (3)

* ACKS maintain the spread back to the original sender

NP NI NP e

4
Slow link \‘{\

Y
Acks maintain spread

CSE 461 University of Washington 37

Benefit of ACK Clocking (4)

* Sender clocks new segments with the spread
* Now sending at the bottleneck link without queuing!

Segments spread _AQueue no longer builds
A
%_5

Slow link

Benefit of ACK Clocking (4)

* Helps run with low levels of loss and delay!
* The network smooths out the burst of data segments
* ACK clock transfers this smooth timing back to sender

* Subsequent data segments are not sent in bursts so do
not queue up in the network

TCP Uses ACK Clocking

* TCP uses a sliding window because of the value of
ACK clocking

*Sliding window controls how many segments are
inside the network

* TCP only sends small bursts of segments to let the
network keep the traffic smooth

Problem

*Sliding window has pipelining to keep network busy
* What if the receiver is overloaded?

Streaming video I

Big Iron Wee Mobile

CSE 461 University of Washington 41

Receiver Sliding Window

* Consider receiver with W buffers
o LAS=LAST ACK SENT
* app pulls in-order data from buffer with recv() call

Sliding

Window W=5

&=

nis‘h ed| |Acgeptable 0 high

T

LAS seq. numb,er

F

D
—]
(@)

Receiver Sliding Window (2)

* Suppose the next two segments arrive but app does
not call recv()

W=5

-
D

—]

(@)

'nis‘hed Acgeptable

I

LAS seq. numb,er

0 hligh

Receiver Sliding Window (3)

* Suppose the next two segments arrive but app does
not call recv()
* LAS rises, but we can’t slide window!

W=5

- |

'nis‘h ed |Acked Tao high

I

LAS seq. number

Receiver Sliding Window (4)

* Further segments arrive (in order) we fill buffer
* Must drop segments until app recvs!

Nothing
W=5 Acceptable!
Finished |Agkec Too high

T

LAS seq. numb,er

Receiver Sliding Window (5)

* App recv() takes two segments

* Window slides (phew)

W=5 Acceptable

2

/

- |

inish

ed

Ac

eo

I

LAS

seq. number

Flow Control

* Avoid loss at receiver by telling sender the available
buffer space
* WIN=#Acceptable, not W (from LAS)

W=5 Acceptable
/

2

inished Ackec

- |

T

LAS seq. numb,er

Flow Control (2)

* Sender uses lower of the sliding window and flow
control window (WIN) as the effective window size

W=3 Acceptable

/

'nis‘h ed |Acked Tao high

I \

LAS sed. numb,er

- |

Flow Control (3)

Sender Receiver Receiver's
Application buffer
does a 2K 0 4K
° I I write -
- [— mpty
TCP-style example —
——ISEQ=G7_ l

* SEQ/ACK sliding window T =
i FlOW Contr0| With WIN Qpplicag&n

SEQ + length < ACK+WIN T e
e 4KB buffer at receiver senderis eI e ~___ Aepication

TACK = I reads 2K

.......

* Circular buffer of bytes e

.....
. o

" <[=]~
Sender may -

send up to 2K —=

CSE 461 University of Washington 49

Topic

* How to set the timeout for sending a retransmission
* Adapting to the network path

S

Network

Retransmissions

* With sliding window, detecting loss with timeout
* Set timer when a segment is sent
* Cancel timer when ack is received
* |If timer fires, retransmit data as lost

Retransmit! J

—>

Timeout Problem

* Timeout should be “just right”

* Too long =2 inefficient network capacity use
* Too short = spurious resends waste network capacity

* But what is “just right”?

e Easy to set on a LAN (Link)
e Short, fixed, predictable RTT

* Hard on the Internet (Transport)
* Wide range, variable RTT

Example of RTTs

1000

900

(0]
o
o

~
o
o

(o))
o
o

400

Round Trip Time (ms)

N
o
o

100

BCN->SEA->BCN

o

J

b A

20 40 60

80

CSE 461 University of Washington

100

120

140

160

180

200

Seconds

53

Example of RTTs (2)

1000

900

800

e (ms)

Tim

(%
o
o

400

Round Tri

N
o
o

100

BCN->SEA->BCN

Variation due to queuing at routers,

e changes in network paths, etc.

A .
TR AT O LYY

WV VV \a/ L] | | A VA Y 1l ad ¥

=
—
—
D>
—
-

Propagation (+transmission) delay = 2D

20 40 60 80 100 120 140 160 180 200

CSE 461 University of Washington SeCOndS

54

Example of RTTs (3)

1000

900

(0]
o
o

~
o
o

o))
o
o

400 -

Round Trip Time (ms)

N
o
o

100

Timer too high!

Need to adapt to the

network conditions

Timer too low!

J

A.AVAA_/\A_Jn\,AJ\/'LJ\,VA,J\A/\,JA”\,/\A,M’

0 20

40

60

80

100

120

140

CSE 461 University of Washington

160

180

200

Seconds

55

Adaptive Timeout

* Smoothed estimates of the RTT (1) and variance in RTT (2)
e Update estimates with a moving average
1. SRTTy.,=0.9*SRTT, + 0.1*RTT.,
2. Svary,; =0.9*%Svary + 0.1*|RTTy,;— SRTTy.4|

* Set timeout to a multiple of estimates

* To estimate the upper RTT in practice
* TCP Timeout, = SRTTy + 4*Svar,

Example of Adaptive Timeout

1000

900

800

700

600

500

RTT (ms)

ﬁ SRTT
400 . /Jf\"L“\ //
300 1 nj\ﬂ//f U |, 1 /
200 ‘tJ‘\A /V\, P | /\

Svar
0 T T T T T T T T T |
0 20 40 60 80 100 120 140 160 180 200

CSE 461 University of Washington SECOndS 57

Example of Adaptive Timeout (2)

1000
wo Early
w0 timeout C Timeout (SRTT + 4*Svar)
700 | /
g 600
: 500 ﬁ
ICE 400 A IJN'I’“\ .
300 1 ﬂ!\ﬁ // f U - N /) /
200 ‘JA/V\V L~ ' ..Av J UV U WA VA J V\J
100 A NN
N ~—_~ S~——
0 ‘ ‘ ‘ ! ! ! ‘ ! ! !
0 20 40 60 80 100 120 140 160 180 200

CSE 461 University of Washington SECOndS 58

Adaptive Timeout (2)

*Simple to compute, does a good job of tracking
actual RTT

e Little “headroom” to lower
* Yet very few early timeouts

* Turns out to be important for good performance
and robustness

