
CSE 461: Computer networks
Spring 2021

Ratul Mahajan

Why is Bandwidth Allocation hard?

•Number of senders and their offered load changes
• Senders may be limited in other ways
• Other parts of network or by applications

•Network is distributed; no single party has an overall
picture of its state

CSE 461 University of Washington 2

Bandwidth Allocation Solution Context

In networks without admission control (e.g., Internet)
Transport and Network layers must work together
• Network layer sees congestion
• Only it can provide direct feedback

• Transport layer causes congestion
• Only it can reduce load

CSE 461 University of Washington 3

Bandwidth Allocation Solution Overview

• Senders adapt concurrently based on their own view
of the network
•Design this adaptation so the network usage as a

whole is efficient and fair
• In practice, efficiency is more important than fairness

•Adaptation is continuous since offered loads continue
to change over time

CSE 461 University of Washington 4

Bandwidth Allocation Models

•Open loop versus closed loop
• Open: reserve bandwidth before use
• Closed: use feedback to adjust rates

•Host versus Network support
•Who is sets/enforces allocations?

•Window versus Rate based
• How is allocation expressed?

CSE 461 University of Washington 5
TCP is a closed loop, host-driven, and window-based

Bandwidth Allocation Models (2)

•We’ll study closed-loop, host-driven, and window-
based too
•Network layer returns feedback on current

allocation to senders
• At least tells if there is congestion

•Transport layer adjusts sender’s behavior via
window in response
• How senders adapt is a control law

CSE 461 University of Washington 6

Additive Increase Multiplicative Decrease

•AIMD is a control law hosts can use to reach a good
allocation
• Hosts additively increase rate while network not congested
• Hosts multiplicatively decrease rate when congested
• Used by TCP

• Let’s explore the AIMD game …

CSE 461 University of Washington 7

AIMD Game

•Hosts 1 and 2 share a bottleneck
• But do not talk to each other directly

•Router provides binary feedback
• Tells hosts if network is congested

CSE 461 University of Washington 8

Rest of
Network

Bottleneck

Router

Host 1

Host 2

1

1
1

AIMD Game (2)

•Each point is a possible allocation

CSE 461 University of Washington 9

Host 1

Host 20 1

1

Fair

Efficient

Optimal
Allocation

Congested

AIMD Game (3)

•AI and MD move the allocation

CSE 461 University of Washington 10

Host 1

Host 20 1

1

Fair, y=x

Efficient, x+y=1

Optimal
Allocation

Congested

Multiplicative
Decrease

Additive
Increase

AIMD Game (4)

•Play the game!

CSE 461 University of Washington 11

Host 1

Host 20 1

1

Fair

Efficient

Congested

A starting
point

AIMD Game (5)

•Always converge to good allocation!

CSE 461 University of Washington 12

Host 1

Host 20 1

1

Fair

Efficient

Congested

A starting
point

AIMD Sawtooth

•Produces a “sawtooth” pattern over time for rate of
each host
• This is the TCP sawtooth (later)

CSE 461 University of Washington 13

Multiplicative
Decrease

Additive
Increase

Time

Host 1 or
2’s Rate

AIMD Properties

•Converges to an allocation that is efficient and fair
when hosts run it
• Holds for more general topologies

•Other increase/decrease control laws do not! (Try
MIAD, MIMD, MIAD)
•Requires only binary feedback from the network

CSE 461 University of Washington 14

Feedback Signals

•Several possible signals, with different pros/cons
•We’ll look at classic TCP that uses packet loss as a signal

CSE 461 University of Washington 15

Signal Example Protocol Pros / Cons
Packet loss TCP NewReno

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Other events can cause loss

Packet delay BBR
(Google)

Hear about congestion early
Need to infer congestion

Router
indication

TCPs with Explicit
Congestion Notification

Hear about congestion early
Require router support

Slow Start (TCP Additive Increase)

TCP “Slow Start” Problem

•We want to quickly near the right rate, cwndIDEAL, but
it varies greatly
• Fixed sliding window doesn’t adapt and is rough on the

network (loss!)
• Additive Increase with small bursts adapts cwnd gently,

but might take a long time to become efficient

CSE 461 University of Washington 18

Slow-Start Solution

•Start by doubling cwnd every RTT
• Exponential growth (1, 2, 4, 8, 16, …)
• Start slow, quickly reach large values

19

AI

Fixed

TimeW
in

do
w

 (c
w

nd
)

Slow-start

Slow-Start Solution (2)

•Eventually packet loss will occur when the network
is congested
• Loss timeout tells us cwnd is too large
• Next time, switch to AI beforehand
• Slowly adapt cwnd near right value

• In terms of cwnd:
• Expect loss for cwndC ≈ 2BD+queue
• Use ssthresh = cwndC/2 to switch to AI

CSE 461 University of Washington 20

Slow-Start Solution (3)

•Combined behavior, after first time
•Most time spent near right value

21

AI

Time

Window

ssthresh

cwndC

cwndIDEAL
AI phase

Slow-start

Slow-Start (Doubling) Timeline

CSE 461 University of Washington 22

Increment cwnd
by 1 packet for
each ACK

Additive Increase Timeline

CSE 461 University of Washington 23

Increment cwnd by 1
packet every cwnd
ACKs (or 1 RTT)

TCP Tahoe (Implementation)

• Initial slow-start (doubling) phase
• Start with cwnd = 1 (or small value)
• cwnd += 1 packet per ACK

• Later Additive Increase phase
• cwnd += 1/cwnd packets per ACK
• Roughly adds 1 packet per RTT

• Switching threshold (initially infinity)
• Switch to AI when cwnd > ssthresh
• Set ssthresh = cwnd/2 after loss
• Begin with slow-start after timeout

CSE 461 University of Washington 24

Fast Recovery
(TCP Multiplicative Decrease)

Inferring Loss from ACKs

•TCP uses a cumulative ACK
• Carries highest in-order seq. number
• Normally a steady advance

•Duplicate ACKs give us hints about what data hasn’t
arrived
• Tell us some new data did arrive, but it was not next

segment
• Thus the next segment may be lost

CSE 461 University of Washington 27

Fast Retransmit

•Treat three duplicate ACKs as a loss
• Retransmit next expected segment
• Some repetition allows for reordering, but still detects loss

quickly

CSE 461 University of Washington 28

Ack 1 2 3 4 5 5 5 5 5 5

Fast Retransmit (2)

CSE 461 University of Washington 29

Ack 10
Ack 11
Ack 12
Ack 13

. . .

Ack 13

Ack 13
Ack 13

Data 14. . .
Ack 13

Ack 20
.

Data 20
Third duplicate
ACK, so send 14 Retransmission fills

in the hole at 14
ACK jumps after
loss is repaired

.

Data 14 was lost
earlier, but got

15 to 20

Fast Retransmit (3)

• It can repair single segment loss quickly, typically
before a timeout
•However, we have quiet time at the sender/receiver

while waiting for the ACK to jump
•And we still need to MD cwnd …

CSE 461 University of Washington 30

Inferring Non-Loss from ACKs

•Duplicate ACKs also give us hints about what data
has arrived
• Each new duplicate ACK means that some new segment

has arrived
• It will be the segments after the loss
• Thus advancing the sliding window will not increase the

number of segments stored in the network

CSE 461 University of Washington 31

Fast Recovery

•First fast retransmit, and MD cwnd
•Then pretend further duplicate ACKs are the

expected ACKs
• Lets new segments be sent for ACKs
• Reconcile views when the ACK jumps

CSE 461 University of Washington 32

Ack 1 2 3 4 5 5 5 5 5 5

Fast Recovery (2)

CSE 461 University of Washington 33

Ack 12
Ack 13
Ack 13

Ack 13
Ack 13

Data 14Ack 13

Ack 20
.

Data 20
Third duplicate
ACK, so send 14

Data 14 was lost
earlier, but got

15 to 20

Retransmission fills
in the hole at 14

Set ssthresh,
cwnd = cwnd/2

Data 21
Data 22

More ACKs advance
window; may send

segments before jump

Ack 13

Exit Fast Recovery

Fast Recovery (3)

•With fast retransmit, it repairs a single segment loss
quickly and keeps the ACK clock running
•This allows us to realize AIMD
• No timeouts or slow-start after loss, just continue with a

smaller cwnd
•TCP Reno combines slow-start, fast retransmit and

fast recovery
•Multiplicative Decrease is ½

CSE 461 University of Washington 34

TCP Reno

CSE 461 University of Washington 35

MD of ½ , no slow-start

ACK clock
running

TCP sawtooth

TCP Reno, NewReno, and SACK

•Reno can repair one loss per RTT
•Multiple losses cause a timeout

•NewReno further refines ACK heuristics
• Repairs multiple losses without timeout

•Selective ACK (SACK) is a better idea
• Receiver sends ACK ranges so sender can retransmit

without guesswork

CSE 461 University of Washington 36

Network-Assisted Congestion
Control

Congestion Avoidance vs. Control

•Classic TCP drives the network into congestion and
then recovers
• Needs to see loss to slow down

•Would be better to use the network but avoid
congestion altogether!
• Reduces loss and delay

•But how can we do this?

CSE 461 University of Washington 38

Feedback Signals

•Delay and router signals can let us avoid congestion

CSE 461 University of Washington 39

Signal Example Protocol Pros / Cons
Packet loss Classic TCP

Cubic TCP (Linux)
Hard to get wrong

Hear about congestion late
Other events can cause loss

Packet delay Compound TCP
(Windows)

Hear about congestion early
Need to infer congestion

Router
indication

TCPs with Explicit
Congestion Notification

Hear about congestion early
Require router support

ECN (Explicit Congestion Notification)

•Router detects the onset of congestion via its queue
•When congested, it marks affected packets (IP header)

CSE 461 University of Washington 40

ECN (2)

•Marked packets arrive at receiver
• TCP receiver informs TCP sender of the congestion

CSE 461 University of Washington 41

ECN (3)

•Advantages:
• Routers deliver clear signal to hosts
• Congestion is detected early, no loss
• No extra packets need to be sent

•Disadvantages:
• Routers and hosts must be upgraded

CSE 461 University of Washington 42

What’s new in transport protocols?

QUIC
MPTCP
BBR
DCTCP

QUIC

https://blog.chromium.org/2015/04/a-quic-update-on-googles-experimental.html

MPTCP: Multipath TCP

By Aclarembeau - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=49727919

BBR:
Bottleneck Bandwidth and
Round trip propagation

https://queue.acm.org/detail.cfm?id=3022184

https://queue.acm.org/detail.cfm?id=3022184

Reaction
Point (RP)

Congestion
Point (CP)

Notification
Point (NP)

RouterSender Receiver

If qlen >= K, mark ECN Echo ECN to RP

Estimate fraction of marked
packets

Adjust cwnd accordingly

Data Data

Ack

DCTCP at a glance

50

Recap: Transport protocols

Goal: Provide end-to-end message delivery to applications
• Reliable (or not), messages vs streams

Challenges:
• Dealing with packet losses
• Dealing with slow receivers (flow control) and network (congestion control)
• Adapting to network conditions

• Determine the right sending rate for yourself
• Individual behaviors resulting in efficient and fair resource use

Toolbox
• Timeouts/retransmissions, sliding windows, max-min fairness, AIMD, ….

