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Outline

▶ Administrivia

▶ Project 1: Socket API

▶ Hw 1: Bandwidth and delay

▶ Hw 1: TCP state transition 
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Administrivia

▶ Different weeks will be led by different TA’s

▶ Hw 1 due Thursday Apr 13 at 11pm

▶ Project 1 due Monday Apr 17 at 11pm
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Network-Application Interface

▶ Application Layer APIs

▶ Defines how apps use the network

▶ Lets apps talk to each other

▶ Hides the other layers of the network

Host

App

Network

App

Host
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How to build network applications?

Computer 1 Computer 2

Physical Network Medium

Fiber-Optic cable, Air, …
(Electromagnetic Wave)

Network 
Hardware

Hardware: Convert bits to wave
e.g., Antenna (air), NIC (wired)

Network 
Hardware

Operating System + 
Device Driver

Operating System + 
Device Driver

OS: send / recv from hardware

system calls

system calls: apps tell OS what to do
OS specific: POSIX socket, WinSock,

Application Application

C/Python/Java Libraries C/Python/Java Libraries

libraries: allow application to use 
system calls, portable across OSes



Project 1

▶ Simple Client

▶ Send requests to attu server

▶ Wait for a reply

▶ Extract the information from the reply

▶ Continue…

▶ Simple Server

▶ Server handles the Client requests

▶ Multi-threaded
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Project 1

▶ This is the basis for many apps!

▶ File transfer: send name, get file (§6.1.4)

▶ Web browsing: send URL, get page

▶ Echo: send message, get it back

▶ Let’s see how to write this app …
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Socket API

▶ Simple application-layer abstractions (APIs) to use the network

▶ The network service API used to write all Internet applications

▶ Part of all major OSes and languages; originally Berkeley (Unix) ~1983

▶ Two kinds of sockets

▶ Streams (TCP): reliably send a stream of bytes

▶ Datagrams (UDP): unreliably send separate messages

Computer Networks 8



Socket API (2)

▶ Sockets let apps attach to the local network at different ports

▶ Ports are used by OS to distinguish services/apps using internet

Socket  
Port 1

Socket  
Port 2
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Socket API (3)

Primitive Meaning

SOCKET Create a new communication endpoint

BIND Associate a local address (port) with a socket

LISTEN Announce willingness to accept connections; (give queue size)

ACCEPT Passively establish an incoming connection

CONNECT Actively attempt to establish a connection

SEND Send some data over the connection

RECEIVE Receive some data from the connection

CLOSE Release the connection

https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html
https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html

Computer Networks 10

https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html
https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html


Using Sockets

SOCKET

Client Server

CONNECT*

SEND  
RECV*

CLOSE

SOCKET

ACCEPT*

RECV*
SEND

CLOSE

BIND

LISTEN

* Denotes a blocking call
- Waits until action is done
- Use threads to avoid blocking
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Client Program (Outline)

socket(); // create socket
getaddrinfo(); // server and port name

// www.example.com:80
connect(); // connect to a server [blocking]
…
send(); // send data
recv(); // await reply [blocking]
… // process reply
close() // done, disconnect
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Server Program (Outline)

socket(); // create socket
getaddrinfo(); // get info for port on this host
bind(); // associate port with socket
listen(); // start accepting connections
while (true) {
  accept(); // wait for a connection [blocking]

// returns a new socket
  {// spawn a new thread for each connection
    recv(); // wait for request [blocking]
    … // process reply
    send(); // send reply
    close(); // close connection with client
  }
}
close(); // close the server socket
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Java Tips

▶ ServerSocket for TCP server socket

▶ Socket for TCP client socket

▶ DatagramSocket for UDP server/client socket

Some other useful utils:

▶ ByteBuffer to manipulate bytes
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Python Tips

▶ socket.socket(socket.AF_INET, socket.SOCK_DGRAM) for UDP

▶ socket.socket(socket.AF_INET, socket.SOCK_STREAM) for TCP

Might be useful:

▶ socketserver

▶ struct.pack() and struct.unpack() to manipulate bytes
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Some guidelines

▶ Make sure your code runs on attu.

▶ Python users can only use packages that are available on attu 

(no pip unfortunately)

▶ Small portions of the grade will be awarded to robustness of your server

▶ Your server should accept clients outside localhost

▶ Close connection when client sends faulty packets or timeout.

▶ Padding and payload length; Number of packets; Correct content; etc.

▶ Multithreaded?
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Outline

▶ Administrivia

▶ Project 1: Socket API

▶ Hw 1: Bandwidth and delay

▶ Hw 1: TCP state transition 
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Network performance

▶ How is network performance evaluated? Try fast.com

18
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Network performance

▶ How is network performance evaluated? Try fast.com

▶ Two fundamental metrics

▶ Speed: how many bits can be transmitted in a certain period of time

▶ Latency: how long it takes for a message to travel one-way/round-trip
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Terms explained, all at once

▶ Bandwidth? Bit rate? Throughput? Goodput?

▶ Can you sort them in descending order
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Terms explained, all at once

▶ Bandwidth = Bit rate >= Throughput >= Goodput

▶ All metrics are used to measure network speed, all are in bits/second

▶ Bandwidth vs Throughput

▶ The capacity of the network vs the utilized capacity of the network

▶ E.g., an Ethernet link can transmit at 1 Gbps (bandwidth). If the sender sleeps for 

1 ms after each sending period of 1 ms, the average throughput will be 0.5 Gbps.
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Terms explained, all at once

▶ Bandwidth = Bit rate >= Throughput >= Goodput

▶ All metrics are used to measure network speed, all are in bits/second

▶ Throughput vs Goodput

▶ All data (regardless of useful or not) counts vs only useful data counts. 

▶ E.g., a TCP connection last 1 second, during which a 10 MB file was transmitted. 

The total amount of data transmitted was 15 MB (including packet headers, 

retransmissions, etc.) What is the throughput and what is the goodput?
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Terms explained, all at once

▶ Latency/Delay? Round trip time(RTT)? Propagation Delay?
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Terms explained, all at once

▶ Latency/Delay: how long it takes for a message to travel one-way

▶ From the sender starts sending the first bit, to the receiver gets the last bit.

▶ Round-trip time (RTT): how long it takes for a message from one end of 

the network to the other and get back.

▶ Propagation delay: how long it takes for a signal to propagate from one 

end of a link to the other.
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Breaking down the latency 

▶ t0 = 0, the sender starts sending the first bit

▶ t1 = size/bandwidth, the sender finishes sending the last bit

▶ t2 = t1 + propagation delay + queueing delay, the last bit gets to 

receiver

25
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Breaking down the latency 

▶ Tips:

▶ Queue=0 if not mentioned

▶ Propagation=RTT/2 if no info other than RTT is provided

▶ Propagation delay limited if Propagation > Transmit, otherwise throughput limited 
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Exercise 

Calculate the total time required to transfer a 1000-KB file, assuming:

- RTT=60 ms

- Bandwidth=8 Mbps

- Needs 2*RTT of handshake time before sending the data
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Exercise 

Calculate the total time required to transfer a 1000-KB file, assuming:

- RTT=60 ms

- Bandwidth=8 Mbps

- Needs 2*RTT of handshake time before sending the data

2*RTT + 1000*8*10^3 bits / (8*10^6 bits/second) + 0.5*RTT = 1.15 seconds
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Outline
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▶ Project 1: Socket API

▶ Hw 1: Bandwidth and delay

▶ Hw 1: TCP state transition 
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Finite-state machine

▶ Is a mathematical model of computation.

▶ Can be in exactly one of a finite number of states at any given time.

▶ Can change from one state to another in response to some inputs; the change 

from one state to another is called a transition.
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The TCP FSM

▶ Each box denotes a state that one end 

of a TCP connection can find itself in.

a. Both ends have independent states!

▶ Each arc denotes events that can 

trigger a state transition.

a. A segment received from the peer 

(SYN/ACK/FIN…)

b. An operation of the local application 

(open/close…)
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How to use this diagram?

Given the sequence of events, you can derive the sequence of states of both sides. 
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Exercise: 3-way handshake 

1. Identify two parties, draw timelines for both.
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Active party (client) Passive party (server)

CLOSED CLOSED



Exercise: 3-way handshake 

2. Initial states of both sides.
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Active party (client) Passive party (server)

CLOSED CLOSED



Exercise: 3-way handshake 

3. The server starts listening.
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Active party (client) Passive party (server)

CLOSED CLOSED

LISTEN
socket.listen()



Exercise: 3-way handshake 

4. The client initiates the connection with a SYN segment 
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Active party (client) Passive party (server)

CLOSED CLOSED

SYN_SENT
SYN (SEQ=x) LISTEN

socket.listen()socket.connect()



Exercise: 3-way handshake 

5. The server received the SYN segment, responses with a SYN/ACK 
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Active party (client) Passive party (server)

CLOSED CLOSED

SYN_SENT
SYN (SEQ=x) LISTEN

socket.listen()socket.connect()

SYN_RCVD
SYN (SEQ=y, 

ACK=x+1)



Exercise: 3-way handshake 

6. The client received the SYN/ACK segment, responses with an ACK
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Active party (client) Passive party (server)

CLOSED CLOSED

SYN_SENT
SYN (SEQ=x) LISTEN

socket.listen()socket.connect()

SYN_RCVD
SYN (SEQ=y, 

ACK=x+1)
ESTABLISHED

SYN (SEQ=x)

SYN (SEQ=x+1, ACK=y+1)



Exercise: 3-way handshake 

7. The server received the ACK, done!
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Active party (client) Passive party (server)

CLOSED CLOSED

SYN_SENT
SYN (SEQ=x) LISTEN

socket.listen()socket.connect()

SYN_RCVD
SYN (SEQ=y, 

ACK=x+1)
ESTABLISHED

SYN (SEQ=x)

SYN (SEQ=x+1, ACK=y+1) ESTABLISHED



Bonus: simultaneous open

Sequence of events. Work out the sequence of states on your own :)
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Party A

SYN (SEQ=x)
socket.connect()socket.connect()

SYN (SEQ=y)

SYN (SEQ=x, ACK=y+1)

Party B

SYN (SE
Q=y, A

CK=x+1)



Thanks for coming!

Any questions?

41


