
Section 1:
Socket API, Bandwidth & Delay, TCP State Transition

(§1.3.4, 1.5, 5.2.3)

With Tapan and Xieyang

Originally by David Wetherall (djw@)

Outline

▶ Administrivia

▶ Project 1: Socket API

▶ Hw 1: Bandwidth and delay

▶ Hw 1: TCP state transition

Computer Networks 2

Administrivia

▶ Different weeks will be led by different TA’s

▶ Hw 1 due Thursday Apr 13 at 11pm

▶ Project 1 due Monday Apr 17 at 11pm

Computer Networks 3

Network-Application Interface

▶ Application Layer APIs

▶ Defines how apps use the network

▶ Lets apps talk to each other

▶ Hides the other layers of the network

Host

App

Network

App

Host

Computer Networks 4

How to build network applications?

Computer 1 Computer 2

Physical Network Medium

Fiber-Optic cable, Air, …
(Electromagnetic Wave)

Network
Hardware

Hardware: Convert bits to wave
e.g., Antenna (air), NIC (wired)

Network
Hardware

Operating System +
Device Driver

Operating System +
Device Driver

OS: send / recv from hardware

system calls

system calls: apps tell OS what to do
OS specific: POSIX socket, WinSock,

Application Application

C/Python/Java Libraries C/Python/Java Libraries

libraries: allow application to use
system calls, portable across OSes

Project 1

▶ Simple Client

▶ Send requests to attu server

▶ Wait for a reply

▶ Extract the information from the reply

▶ Continue…

▶ Simple Server

▶ Server handles the Client requests

▶ Multi-threaded

Computer Networks 6

Project 1

▶ This is the basis for many apps!

▶ File transfer: send name, get file (§6.1.4)

▶ Web browsing: send URL, get page

▶ Echo: send message, get it back

▶ Let’s see how to write this app …

Computer Networks 7

Socket API

▶ Simple application-layer abstractions (APIs) to use the network

▶ The network service API used to write all Internet applications

▶ Part of all major OSes and languages; originally Berkeley (Unix) ~1983

▶ Two kinds of sockets

▶ Streams (TCP): reliably send a stream of bytes

▶ Datagrams (UDP): unreliably send separate messages

Computer Networks 8

Socket API (2)

▶ Sockets let apps attach to the local network at different ports

▶ Ports are used by OS to distinguish services/apps using internet

Socket
Port 1

Socket
Port 2

Computer Networks 9

Socket API (3)

Primitive Meaning

SOCKET Create a new communication endpoint

BIND Associate a local address (port) with a socket

LISTEN Announce willingness to accept connections; (give queue size)

ACCEPT Passively establish an incoming connection

CONNECT Actively attempt to establish a connection

SEND Send some data over the connection

RECEIVE Receive some data from the connection

CLOSE Release the connection

https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html
https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html

Computer Networks 10

https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html
https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html

Using Sockets

SOCKET

Client Server

CONNECT*

SEND
RECV*

CLOSE

SOCKET

ACCEPT*

RECV*
SEND

CLOSE

BIND

LISTEN

* Denotes a blocking call
- Waits until action is done
- Use threads to avoid blocking

Computer Networks 11

Client Program (Outline)

socket(); // create socket
getaddrinfo(); // server and port name

// www.example.com:80
connect(); // connect to a server [blocking]
…
send(); // send data
recv(); // await reply [blocking]
… // process reply
close() // done, disconnect

Computer Networks 12

Server Program (Outline)

socket(); // create socket
getaddrinfo(); // get info for port on this host
bind(); // associate port with socket
listen(); // start accepting connections
while (true) {
 accept(); // wait for a connection [blocking]

// returns a new socket
 {// spawn a new thread for each connection
 recv(); // wait for request [blocking]
 … // process reply
 send(); // send reply
 close(); // close connection with client
 }
}
close(); // close the server socket

Computer Networks 13

Java Tips

▶ ServerSocket for TCP server socket

▶ Socket for TCP client socket

▶ DatagramSocket for UDP server/client socket

Some other useful utils:

▶ ByteBuffer to manipulate bytes

Computer Networks 14

Python Tips

▶ socket.socket(socket.AF_INET, socket.SOCK_DGRAM) for UDP

▶ socket.socket(socket.AF_INET, socket.SOCK_STREAM) for TCP

Might be useful:

▶ socketserver

▶ struct.pack() and struct.unpack() to manipulate bytes

Computer Networks 15

Some guidelines

▶ Make sure your code runs on attu.

▶ Python users can only use packages that are available on attu

(no pip unfortunately)

▶ Small portions of the grade will be awarded to robustness of your server

▶ Your server should accept clients outside localhost

▶ Close connection when client sends faulty packets or timeout.

▶ Padding and payload length; Number of packets; Correct content; etc.

▶ Multithreaded?

Computer Networks 16

Outline

▶ Administrivia

▶ Project 1: Socket API

▶ Hw 1: Bandwidth and delay

▶ Hw 1: TCP state transition

Computer Networks 17

Network performance

▶ How is network performance evaluated? Try fast.com

18

http://fast.com

Network performance

▶ How is network performance evaluated? Try fast.com

▶ Two fundamental metrics

▶ Speed: how many bits can be transmitted in a certain period of time

▶ Latency: how long it takes for a message to travel one-way/round-trip

19

http://fast.com

Terms explained, all at once

▶ Bandwidth? Bit rate? Throughput? Goodput?

▶ Can you sort them in descending order

20

Terms explained, all at once

▶ Bandwidth = Bit rate >= Throughput >= Goodput

▶ All metrics are used to measure network speed, all are in bits/second

▶ Bandwidth vs Throughput

▶ The capacity of the network vs the utilized capacity of the network

▶ E.g., an Ethernet link can transmit at 1 Gbps (bandwidth). If the sender sleeps for

1 ms after each sending period of 1 ms, the average throughput will be 0.5 Gbps.

21

Terms explained, all at once

▶ Bandwidth = Bit rate >= Throughput >= Goodput

▶ All metrics are used to measure network speed, all are in bits/second

▶ Throughput vs Goodput

▶ All data (regardless of useful or not) counts vs only useful data counts.

▶ E.g., a TCP connection last 1 second, during which a 10 MB file was transmitted.

The total amount of data transmitted was 15 MB (including packet headers,

retransmissions, etc.) What is the throughput and what is the goodput?

22

Terms explained, all at once

▶ Latency/Delay? Round trip time(RTT)? Propagation Delay?

23

Terms explained, all at once

▶ Latency/Delay: how long it takes for a message to travel one-way

▶ From the sender starts sending the first bit, to the receiver gets the last bit.

▶ Round-trip time (RTT): how long it takes for a message from one end of

the network to the other and get back.

▶ Propagation delay: how long it takes for a signal to propagate from one

end of a link to the other.

24

Breaking down the latency

▶ t0 = 0, the sender starts sending the first bit

▶ t1 = size/bandwidth, the sender finishes sending the last bit

▶ t2 = t1 + propagation delay + queueing delay, the last bit gets to

receiver

25

Eq1 (Important to your hw 1):

Breaking down the latency

▶ Tips:

▶ Queue=0 if not mentioned

▶ Propagation=RTT/2 if no info other than RTT is provided

▶ Propagation delay limited if Propagation > Transmit, otherwise throughput limited

26

Eq1 (Important to your hw 1):

Exercise

Calculate the total time required to transfer a 1000-KB file, assuming:

- RTT=60 ms

- Bandwidth=8 Mbps

- Needs 2*RTT of handshake time before sending the data

27

Exercise

Calculate the total time required to transfer a 1000-KB file, assuming:

- RTT=60 ms

- Bandwidth=8 Mbps

- Needs 2*RTT of handshake time before sending the data

2*RTT + 1000*8*10^3 bits / (8*10^6 bits/second) + 0.5*RTT = 1.15 seconds

28

Outline

▶ Administrivia

▶ Project 1: Socket API

▶ Hw 1: Bandwidth and delay

▶ Hw 1: TCP state transition

Computer Networks 29

Finite-state machine

▶ Is a mathematical model of computation.

▶ Can be in exactly one of a finite number of states at any given time.

▶ Can change from one state to another in response to some inputs; the change

from one state to another is called a transition.

30

The TCP FSM

▶ Each box denotes a state that one end

of a TCP connection can find itself in.

a. Both ends have independent states!

▶ Each arc denotes events that can

trigger a state transition.

a. A segment received from the peer

(SYN/ACK/FIN…)

b. An operation of the local application

(open/close…)

31

How to use this diagram?

Given the sequence of events, you can derive the sequence of states of both sides.

32

Exercise: 3-way handshake

1. Identify two parties, draw timelines for both.

33

Active party (client) Passive party (server)

CLOSED CLOSED

Exercise: 3-way handshake

2. Initial states of both sides.

34

Active party (client) Passive party (server)

CLOSED CLOSED

Exercise: 3-way handshake

3. The server starts listening.

35

Active party (client) Passive party (server)

CLOSED CLOSED

LISTEN
socket.listen()

Exercise: 3-way handshake

4. The client initiates the connection with a SYN segment

36

Active party (client) Passive party (server)

CLOSED CLOSED

SYN_SENT
SYN (SEQ=x) LISTEN

socket.listen()socket.connect()

Exercise: 3-way handshake

5. The server received the SYN segment, responses with a SYN/ACK

37

Active party (client) Passive party (server)

CLOSED CLOSED

SYN_SENT
SYN (SEQ=x) LISTEN

socket.listen()socket.connect()

SYN_RCVD
SYN (SEQ=y,

ACK=x+1)

Exercise: 3-way handshake

6. The client received the SYN/ACK segment, responses with an ACK

38

Active party (client) Passive party (server)

CLOSED CLOSED

SYN_SENT
SYN (SEQ=x) LISTEN

socket.listen()socket.connect()

SYN_RCVD
SYN (SEQ=y,

ACK=x+1)
ESTABLISHED

SYN (SEQ=x)

SYN (SEQ=x+1, ACK=y+1)

Exercise: 3-way handshake

7. The server received the ACK, done!

39

Active party (client) Passive party (server)

CLOSED CLOSED

SYN_SENT
SYN (SEQ=x) LISTEN

socket.listen()socket.connect()

SYN_RCVD
SYN (SEQ=y,

ACK=x+1)
ESTABLISHED

SYN (SEQ=x)

SYN (SEQ=x+1, ACK=y+1) ESTABLISHED

Bonus: simultaneous open

Sequence of events. Work out the sequence of states on your own :)

40

Party A

SYN (SEQ=x)
socket.connect()socket.connect()

SYN (SEQ=y)

SYN (SEQ=x, ACK=y+1)

Party B

SYN (SE
Q=y, A

CK=x+1)

Thanks for coming!

Any questions?

41

