Section 1:
Socket API, Bandwidth & Delay, TCP State Transition

(81.3.4, 1.5, 5.2.3)
With Tapan and Xieyang

W UNIVERSITY of WASHINGTON Originally by David Wetherall (djw®)

Outline

» Administrivia
» Project 1: Socket API
» Hw 1: Bandwidth and delay

» Hw 1: TCP state transition

W UNIVERSITY of WASHINGTON

Computer Networks

Administrivia

» Different weeks will be led by different TA’s
» Hw 1 due Thursday Apr 13 at 11pm

» Project 1 due Monday Apr 17 at 11pm

W UNIVERSITY of WASHINGTON Computer Networks

Network-Application Interface

» Application Layer APIs

The 7 Layers of OSI

» Defines how apps use the network

Transmit :& Receive

Data User Bath

» Lets apps talk to each other

[Application (Layer 7)]

» Hides the other layers of the network [Presentation (Layers) |
[Session (Layer 5) J
[Transport (Layer 4)]
App App [Network (Layer 3)]

L | Data Link (Layer 2)]
- Network Physical (Layer 1)
P =

Host Host —- Physical Link s

W UNIVERSITY of WASHINGTON Computer Networks

How to build network applications?

libraries: allow application to use
system calls, portable across OSes

Application system calls: apps tell OS what to do Application
OS specific: POSIX socket, WinSock,
C/Python/Java Libraries C/Python/Java Libraries
0S: send / recv from hardware
system calls i I
Hardware: Convert bits to wave
e.g., Antenna (air), NIC (wired)
Operating System + Network Network Operating System +
Device Driver Hardware Hardware Device Driver
||| Physical Network Medium >
| |
Fiber-Optic cable, Air, ...
Computer 1 (Electromagnetic Wave) Computer 2

W UNIVERSITY of WASHINGTON

Project 1

» Simple Client
Send requests to attu server
Wait for a reply

Extract the information from the reply

v v v Vv

Continue...

» Simple Server

» Server handles the Client requests

» Multi-threaded

W UNIVERSITY of WASHINGTON Computer Networks

Project 1

» This is the basis for many apps!

» File transfer: send name, get file (86.1.4)
» Web browsing: send URL, get page

» Echo: send message, get it back

» Let’s see how to write this app ...

W UNIVERSITY of WASHINGTON Computer Networks

Socket API

» Simple application-layer abstractions (APIs) to use the network

» The network service APl used to write all Internet applications

» Part of all major OSes and languages; originally Berkeley (Unix) ~1983

» Two kinds of sockets

» Streams (TCP): reliably send a stream of bytes

» Datagrams (UDP): unreliably send separate messages

W UNIVERSITY of WASHINGTON Computer Networks

Socket API (2)

» Sockets let apps attach to the local network at different ports

» Ports are used by OS to distinguish services/apps using internet

W UNIVERSITY of WASHINGTON Computer Networks

Socket API (3)

Primitive Meaning

SOCKET Create a new communication endpoint
BIND Associate a local address (port) with a socket
LISTEN Announce willingness to accept connections; (give queue size)
ACCEPT Passively establish an incoming connection
CONNECT Actively attempt to establish a connection
SEND Send some data over the connection
RECEIVE Receive some data from the connection

CLOSE Release the connection

https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html
https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html

W UNIVERSITY of WASHINGTON Computer Networks

https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html
https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html

Using Sockets

Client

SOCKET

CONNECT*

SEND
RECV*

CLOSE

\J

W UNIVERSITY of WASHINGTON

VoYY

Server
SOCKET
BIND
LISTEN
ACCEPT*
RECV*

SEND
CLOSE

\J

Computer Networks

* Denotes a blocking call
Waits until action is done
Use threads to avoid blocking

11

Client Program (Outline)

socket(); // create socket
getaddrinfo(); // server and port name
// www.example.com:860
connect(); // connect to a server [blocking]

send(); // send data

recv(); // await reply [blocking]
// process reply

close() // done, disconnect

YA UNIVERSITY of WASHINGTON Computer Networks

12

Server Program (Outline)

socket(); // create socket
getaddrinfo(); // get info for port on this host
bind(); // associate port with socket
listen(); // start accepting connections
while (true) {
accept(); // wait for a connection [blocking]
// returns a new socket
{// spawn a new thread for each connection
recv(); // wait for request [blocking]
... // process reply
send(); // send reply
close(); // close connection with client

¥
¥

close(); // close the server socket

YA UNIVERSITY of WASHINGTON Computer Networks

13

Java Tips

» ServerSocket for TCP server socket
» Socket for TCP client socket

» DatagramSocket for UDP server/client socket

Some other useful utils:

» ByteBuffer to manipulate bytes

W UNIVERSITY of WASHINGTON Computer Networks

14

Python Tips

» socket.socket(socket.AF_INET, socket.SOCK DGRAM) for UDP

» socket.socket(socket.AF _INET, socket.SOCK _STREAM) for TCP

Might be useful:
» socketserver

» struct.pack() and struct.unpack() to manipulate bytes

W UNIVERSITY of WASHINGTON Computer Networks

15

Some guidelines

» Make sure your code runs on attu.

» Python users can only use packages that are available on attu

(no pip unfortunately)

» Small portions of the grade will be awarded to robustness of your server

» Your server should accept clients outside localhost

» Close connection when client sends faulty packets or timeout.

» Padding and payload length; Number of packets; Correct content; etc.

» Multithreaded?

W UNIVERSITY of WASHINGTON Computer Networks

16

Outline

» Administrivia
» Project 1: Socket API
» Hw 1: Bandwidth and delay

» Hw 1: TCP state transition

W UNIVERSITY of WASHINGTON

Computer Networks

17

Network performance

» How is network performance evaluated? Try fast.com

W UNIVERSITY of WASHINGTON

18

http://fast.com

Network performance

» How is network performance evaluated? Try fast.com

» [Two fundamental metrics

» Speed: how many bits can be transmitted in a certain period of time

» Latency: how long it takes for a message to travel one-way/round-trip

W UNIVERSITY of WASHINGTON

19

http://fast.com

Terms explained, all at once

» Bandwidth? Bit rate? Throughput? Goodput?

» Can you sort them in descending order

W UNIVERSITY of WASHINGTON

20

Terms explained, all at once

» Bandwidth = Bit rate >= Throughput >= Goodput

» All metrics are used to measure network speed, all are in bits/second

» Bandwidth vs Throughput

» The capacity of the network vs the utilized capacity of the network
» E.g., an Ethernet link can transmit at 1 Gbps (bandwidth). If the sender sleeps for

1 ms after each sending period of 1 ms, the average throughput will be 0.5 Gbps.

W UNIVERSITY of WASHINGTON 21

Terms explained, all at once

» Bandwidth = Bit rate >= Throughput >= Goodput

» All metrics are used to measure network speed, all are in bits/second

» Throughput vs Goodput

» All data (regardless of useful or not) counts vs only useful data counts.

» E.g., a TCP connection last 1 second, during which a 10 MB file was transmitted.

The total amount of data transmitted was 15 MB (including packet headers,

retransmissions, etc.) What is the throughput and what is the goodput?

W UNIVERSITY of WASHINGTON

22

Terms explained, all at once

» Latency/Delay? Round trip time(RTT)? Propagation Delay?

W UNIVERSITY of WASHINGTON

23

Terms explained, all at once

» Latency/Delay: how long it takes for a message to travel one-way
» From the sender starts sending the first bit, to the receiver gets the last bit.

» Round-trip time (RTT): how long it takes for a message from one end of
the network to the other and get back.
» Propagation delay: how long it takes for a signal to propagate from one

end of a link to the other.

W UNIVERSITY of WASHINGTON 24

Breaking down the latency

» t0 =0, the sender starts sending the first bit
» t1 =size/bandwidth, the sender finishes sending the last bit

» t2 =t1 + propagation delay + queueing delay, the last bit gets to

receiver

Eq1 (Important to your hw 1):

Latency = Propagation + Transmit + Queue
Propagation = Distance/SpeedOfLight
Transmit = Size/Bandwidth

W UNIVERSITY of WASHINGTON

25

Breaking down the latency

» Tips:
» Queue=0 if not mentioned

» Propagation=RTT/2 if no info other than RTT is provided

» Propagation delay limited if Propagation > Transmit, otherwise throughput limited

Eq1 (Important to your hw 1):

Latency = Propagation + Transmit + Queue
Propagation = Distance/SpeedOfLight
Transmit = Size/Bandwidth

W UNIVERSITY of WASHINGTON 26

Exercise

Calculate the total time required to transfer a 1000-KB file, assuming:

- RTT=60 ms
- Bandwidth=8 Mbps
- Needs 2*RTT of handshake time before sending the data

W UNIVERSITY of WASHINGTON

27

Exercise

Calculate the total time required to transfer a 1000-KB file, assuming:

- RTT=60 ms
- Bandwidth=8 Mbps
- Needs 2*RTT of handshake time before sending the data

2*RTT + 1000*8*10" 3 bits / (8*10"6 bits/second) + 0.5*RTT = 1.15 seconds

W UNIVERSITY of WASHINGTON

28

Outline

» Administrivia
» Project 1: Socket API
» Hw 1: Bandwidth and delay

» Hw 1: TCP state transition

W UNIVERSITY of WASHINGTON

Computer Networks

29

Finite-state machine

» Is a mathematical model of computation.

» Can be in exactly one of a finite number of states at any given time.
» Can change from one state to another in response to some inputs; the change

from one state to another is called a transition.

W UNIVERSITY of WASHINGTON

30

The TCP FSM

CLOSED
! Active open/SYN
Passive open Close
» Each box denotes a state that one end ’ | Close
o o . o LISTEN
of a TCP connection can find itself in. _J L
a. Both ends have independent states! e I NS S
» Each arc denotes events that can AcK / SYN+ACKIACK
Close/FIN
trigger a state transition. e
.) —CIOW FIN/ACK
a. A segment received from the peer FIN_WAIT 1 ~— .[clLosE_ wAIT
FIN/ACK
(SYN/ACK/FIN...) ERSR CloseF N

FIN_WAIT 2

. . . CLOSING LAST_ACK

b. An operation of the local application AGK Tineout after iwo ACK
k FINJACK A segment lifetimes

(open/close...) ~ TIME_WAIT ~ CLOSED

Figure 5.7.: TCP state-transition diagram.

W UNIVERSITY of WASHINGTON 31

How to use this diagram?

Given the sequence of events, you can derive the sequence of states of both sides.

(Start)
CONNECT/SYN (Step 1 of the 3-way handshake)
Active party (client) Passive party (server) PSR s CLoSE \\
CLOSED 1 CLOSED ustee | | closer
SYN_SENT SYN (SEQ=x) LISTEN SYN/SYN + ACK J
Step2 ;7O the 3-way handshake) | LISTEN
2 5 SYN_RCVD SN SRS -
' T
o=\ -
M = RST/ SENDISYN
ESTABLISHED (se0. 3 R SYN/SYN + ACK (simultaneous open) L_oo !
Q=x+1’ Ack. E
) Y1 - (Data transfer state)
Time ESTABLISHED | ACKL —
"""""""""" ~| ESTABLISHED | =553 of the 3-way handshake)

W UNIVERSITY of WASHINGTON 32

Exercise: 3-way handshake

1. ldentify two parties, draw timelines for both.

Active party (client) Passive party (server) & CONNECT/SYN (Step 1 of the 3-way handshake)
CLOSED |7 ~N
CLOSED CLOSED ‘ CLOSE-
LISTEN/~ | | CLOSE/~
SYN/SYN + ACK '
(Step 2 //of the 3-way handshake) | LISTEN
'
' JAN
e RST/ SENDISYN oo
RCVD |= , SENT
T SYN/SYN + ACK (simultaneous open)
]
E (Data transfer state)
\. ACK/- SYN + ACKIACK _/
""""""""" +| ESTABUSHED |=—ser3 of the 3-way handshake)

W UNIVERSITY of WASHINGTON 33

Exercise: 3-way handshake

2. Initial states of both sides.

Active party (client) Passive party (server) & CONNECT/SYN (Step 1 of the 3-way handshake)
CLOSED |7 ~N
CLOSED CLOSED ‘ CLOSE-
LISTEN/~ | | CLOSE/~
SYN/SYN + ACK '
(Step 2 //of the 3-way handshake) | LISTEN
'
' JAN
e RST/ SENDISYN oo
RCVD |= , SENT
T SYN/SYN + ACK (simultaneous open)
]
E (Data transfer state)
\. ACK/- SYN + ACKIACK _/
""""""""" +| ESTABUSHED |=—ser3 of the 3-way handshake)

W UNIVERSITY of WASHINGTON 34

Exercise: 3-way handshake

3. The server starts listening.

: : , —_—
Active party (client) Passive party (server) CONMECT/SYN (Siep 1 of the 3-way handshake)
CLOSED [T N
CLOSED CLOSED ‘ CLOSE-)
socket.listen() LISTEN/~ | | CLOSE/-~
SYN/SYN + ACK
LISTEN (Step2 /6tha Swiay Fandhake) | LISTEN
'
' - U
SYN RST SENDISYN o
RC\{D SYN/SYN + ACK (simultaneous open) SENT
E (Data transfer state)
. ACKI- SYN + ACKIACK __/
.................. o (Step 3 of the 3-way handshake)

W UNIVERSITY of WASHINGTON 35

Exercise: 3-way handshake

4. The client initiates the connection with a SYN segment

. . . Start
Active party (client) Passive party (server) i CONNECT/SYN (Step 1 of the 3-way handshake)
CLOSED | ™
CLOSED CLOSED ‘ CLOSE~)

LISTEN/~- CLOSE/~-

socket.connect() socket.listen()

SYN (s SYNISYN + ACK '
SYN_SENT w‘ LISTEN (Step 2 ;/of the 3-way handshake) | LISTEN

! AN

o RST/ SENDISYN -

RC\{D SYN/SYN + ACK (simultaneous open)]
i (Data transfer state)
\. ACKJ- SYN + ACKIACK _/

""""""""" ~| ESTABLISHED | =553 of the 3-way handshake)

W UNIVERSITY of WASHINGTON 36

Exercise: 3-way handshake

5. The server received the SYN segment, responses with a SYN/ACK

. . : Start
Active party (client) Passive party (server) il CONNECT/SYN (Step 1 of the 3-way handshake)
CLOSED | N
CLOSED CLOSED . CLOSE~)

socket.connect() S socket.listen() . ACKLISTENI_’ CLOSE/-
+

SYN_SENT "N (sEqQ- LISTEN
= N‘ (Step 2 ;/Of the 3-way handshake) | LISTEN
0 EOY SYN_RCVD W RST/- JAN SENDISYN
> S SYNISYN + ACK (simultaneous open) L_oo !

(Data transfer state)

\ — SYN + ACKIACK __/
ESTABLISHED [=—reto - the 3.way handshake)

W UNIVERSITY of WASHINGTON 37

Exercise: 3-way handshake

6. The client received the SYN/ACK segment, responses with an ACK

. . : Start
Active party (client) Passive party (server) il CONNECT/SYN (Step 1 of the 3-way handshake)
CLOSED | ~
CLOSED CLOSED ‘ CLOSE~

socket.connect() S socket.listen() LISTEN/- | CLOSE/~

YN (SE SYN/SYN + ACK
SYN_S ENT w‘ LlSTEN (Step 2 ,’Ef-ﬁé-ﬁa&-ﬁiﬁagﬁa-fé)“‘ LISTEN

! AN
SYN_RCVD o RST/ SENDISYN oo
RCYD SYN/SYN + ACK (simultaneous open) Sy
ESTABLISHED |
E (Data transfer state)
\. ACK/- | SYN + ACK/ACK | /
""""""""" +| ESTAED (Step 3 of the 3-way handshake)

W UNIVERSITY of WASHINGTON 38

Exercise: 3-way handshake

/. The server received the ACK, done!

Active party (client) Passive party (server) o CONNECT/SYN (Step 1 of the 3-way handshake)
CLOSED | .
CLOSED CLOSED ‘ CLOSE-
socket.connect() socket.listen() LISTEN- , CLOSE-
SYN (SEQ- SYN/SYN + ACK
SYN_SENT N‘ HOTEN (Step 2 {'gf-ﬁé-ﬁa-}l-ﬁéﬁagﬁa-fé)-“ LISTEN
1
o Q=Y SYN_RCVD o RST/-) k SENDISYN o
NN RCVD |= . SENT
T SYN/SYN + ACK (simultaneous open)
ESTABLISHED |
E (Data transfer state)
\ ACKI- SYN + ACKIACK _/
............... ----o| ESTABLISHED
ESTABLISHED (Step 3 of the 3-way handshake)

W UNIVERSITY of WASHINGTON 39

Bonus: simultaneous open

Sequence of events. Work out the sequence of states on your own :)

(Start)
Party A Party B CONNECT/SYN (Step 1 of the 3-way handshake)
CLOSED | \
‘ CLOSE-
socket.connect() Sy ¢ y) socket.connect() LISTENF- , CLOSE-
(SEQsx)o¥N © ..o s T
(Step 2 ,of the 3-way handshake) LISTEN
'
! JAN
SYN RSTF SEND/SYN o SYN
RCVD |= . SENT
T SYN/SYN + ACK (simultaneous open)
i (Data transfer state)
\. ACKJ- SYN + ACKIACK _/
""""""""""""" = B (Step 3 of the 3-way handshake)

W UNIVERSITY of WASHINGTON 40

Thanks for coming!

Any questions?

41

