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Flow control goal

Match transmission speed to reception capacity
• Otherwise data will be lost



ARQ: Automatic repeat query

•ARQ with one message at a time is Stop-and-Wait
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Limitation of Stop-and-Wait

• It allows only a single message to be outstanding 
from the sender:
• Fine for LAN (only one frame fits in network anyhow)
• Not efficient for network paths with longer delays
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Limitation of Stop-and-Wait (2)

•Example: B=1 Mbps, D = 50 ms
• RTT (Round Trip Time) = 2D = 100 ms
• How many packets/sec? 
• 10

• Usage efficiency if packets are 10kb?
• (10,000 x 10) / (1 x 106) = 10% 

•What is the efficiency if B=10 Mbps?
• 1%
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Sliding Window

•Generalization of stop-and-wait
• Allows W packets to be outstanding
• Can send W packets per RTT (=2D)

• Pipelining improves performance 
• Need W=2BD to fill network path
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Sliding Window (2)

What W will use the network capacity with 10kb packets?

• Ex: B=1 Mbps, D = 50 ms
• 2BD = 2 x 106 x 50/1000 = 100 Kb
• W = 100 kb/10 = 10 packets 

• Ex: What if B=10 Mbps?
• W = 100 packets
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Sliding Window Protocol

•Many variations, depending on how buffers, 
acknowledgements, and retransmissions are 
handled

•Go-Back-N
• Simplest version, can be inefficient

•Selective Repeat
•More complex, better performance
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Sender Sliding Window 

•Sender buffers up to W segments until they are 
acknowledged
• LFS=LAST FRAME SENT, LAR=LAST ACK REC’D
• Sends while LFS – LAR ≤ W 
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Sender Sliding Window (2) 

•Transport accepts another segment of data from the 
Application ...
• Transport sends it (LFS–LAR à 5)
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Sender Sliding Window (3) 

•Next higher ACK arrives from peer…
•Window advances, buffer is freed 
• LFS–LAR à 4 (can send one more) 
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Receiver Sliding Window – Go-Back-N

•Receiver keeps only a single packet buffer for the 
next segment
• State variable, LAS = LAST ACK SENT

•On receive:
• If seq. number is LAS+1, accept and pass it to app, update 

LAS, send ACK
• Otherwise discard (as out of order)
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Flow control recap

Goal: Match sending speed to receiver’s capacity

3 increasingly complex and increasingly efficient solutions
• Stop and wait
• Sliding window: go back N
• Sliding window: selective repeat



Go back N

Sender sent packets 42, 43, 44, 45, …

If 43 is lost, all of 43, 44, 45 must be resent

Receiver does not buffer out of order packets (simple)



Receiver Sliding Window – Selective Repeat

• Receiver passes data to app in order, and buffers out-of-
order segments to reduce retransmissions

• ACK conveys highest in-order segment, plus hints about out-
of-order segments
• Ex: I got everything up to 42 (LAS), and got 44, 45

• TCP uses a selective repeat design; we’ll see the details later
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Receiver Sliding Window – Selective Repeat (2)

•Buffers W segments, keeps state variable LAS = LAST
ACK SENT

•On receive:
• Buffer segments [LAS+1, LAS+W] 
• Send app in-order segments from LAS+1, and update LAS
• Send ACK for LAS regardless
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Sender Sliding Window – Selective Repeat 

•Keep normal sliding window
• If out-of-order ACK arrives
• Send LAR+1 again!
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Sender Sliding Window – Selective Repeat (2) 

•Keep normal sliding window
• If in-order ACK arrives
•Move window and LAR, send more messages
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Sliding Window – Retransmissions

•Go-Back-N uses a single timer to detect losses
• On timeout, resends buffered packets  starting at LAR+1

•Selective Repeat uses a timer per unacked segment 
to detect losses
• On timeout for segment, resend it
• Hope to resend fewer segments
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Sequence Numbers

Need more than 0/1 for Stop-and-Wait … but how many?
• For Selective Repeat: 2W seq numbers
• W for packets, plus W for earlier acks

• For Go-Back-N: W+1 sequence numbers

Typically implement seq. number with an N-bit counter that 
wraps around at 2N—1 
• E.g., N=8:   …, 253, 254, 255, 0, 1, 2, 3, …
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Sequence Time Plot
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Sequence Time Plot (2)
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Sequence Time Plot (3)
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ACK Clocking



Sliding Window ACK Clock

•Typically, the sender does not know B or D
•Each new ACK advances the sliding window and lets 

a new segment enter the network
• ACKs “clock” data segments
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Benefit of ACK Clocking

•Consider what happens when sender injects a burst 
of segments into the network
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Benefit of ACK Clocking (2)

•Segments are buffered and spread out on slow link
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Benefit of ACK Clocking (3)

•ACKs maintain the spread back to the original sender
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Benefit of ACK Clocking (4)

•Sender clocks new segments with the spread
• Now sending at the bottleneck link without queuing!
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Benefit of ACK Clocking (4)

•Helps run with low levels of loss and delay!
•The network smooths out the burst of data segments
•ACK clock transfers this smooth timing back to sender
•Subsequent data segments are not sent in bursts so do 

not queue up in the network
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TCP Uses ACK Clocking

•TCP uses a sliding window because of the value of 
ACK clocking
•Sliding window controls how many segments are 

inside the network
•TCP only sends small bursts of segments to let the 

network keep the traffic smooth
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Problem

•Sliding window has pipelining to keep network busy
•What if the receiver is overloaded?
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Receiver Sliding Window 

•Consider receiver with W buffers
• LAS=LAST ACK SENT
• app pulls in-order data from buffer with recv() call
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Receiver Sliding Window (2) 

•Suppose the next two segments arrive but app does 
not call recv()
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Receiver Sliding Window (3) 

•Suppose the next two segments arrive but app does 
not call recv()
• LAS rises, but we can’t slide window!
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Receiver Sliding Window (4) 

•Further segments arrive (in order) we fill buffer 
•Must drop segments until app recvs!
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Receiver Sliding Window (5) 

•App recv() takes two segments
•Window slides (phew)
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Flow Control

•Avoid loss at receiver by telling sender the available 
buffer space
•WIN=#Acceptable, not W (from LAS)
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Flow Control (2)

•Sender uses lower of the sliding window and flow 
control window (WIN) as the effective window size
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Flow Control (3)

•TCP-style example
• SEQ/ACK sliding window
• Flow control with WIN
• SEQ + length < ACK+WIN
• 4KB buffer at receiver
• Circular buffer of bytes



Topic

•How to set the timeout for sending a retransmission
• Adapting to the network path
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Retransmissions

•With sliding window, detecting loss with timeout
• Set timer when a segment is sent
• Cancel timer when ack is received
• If timer fires, retransmit data as lost
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Timeout Problem

•Timeout should be “just right”
• Too long à inefficient network capacity use
• Too short à spurious resends waste network capacity

•But what is “just right”?
• Easy to set on a LAN (Link)
• Short, fixed, predictable RTT

• Hard on the Internet (Transport)
• Wide range, variable RTT
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Example of RTTs
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Example of RTTs (2)
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Example of RTTs (3)
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Adaptive Timeout

• Smoothed estimates of the RTT (1) and variance in RTT (2)
• Update estimates with a moving average
1. SRTTN+1 = 0.9*SRTTN + 0.1*RTTN+1
2. SvarN+1 = 0.9*SvarN + 0.1*|RTTN+1– SRTTN+1|

• Set timeout to a multiple of estimates
• To estimate the upper RTT in practice
• TCP TimeoutN = SRTTN + 4*SvarN
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Example of Adaptive Timeout
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Example of Adaptive Timeout (2)

CSE 461 University of Washington 49

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

RT
T 

(m
s)

Timeout (SRTT + 4*Svar)

Early
timeout

Seconds



Adaptive Timeout (2)

•Simple to compute, does a good job of tracking 
actual RTT
• Little “headroom” to lower
• Yet very few early timeouts

•Turns out to be important for good performance 
and robustness
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