
Flow Control
CSE 461
Ratul Mahajan

Flow control goal

Match transmission speed to reception capacity
• Otherwise data will be lost

ARQ: Automatic repeat query

•ARQ with one message at a time is Stop-and-Wait

CSE 461 University of Washington 3

Frame 0

ACK 0Timeout Time

Sender Receiver

Frame 1

ACK 1

Limitation of Stop-and-Wait

• It allows only a single message to be outstanding
from the sender:
• Fine for LAN (only one frame fits in network anyhow)
• Not efficient for network paths with longer delays

CSE 461 University of Washington 4

Limitation of Stop-and-Wait (2)

•Example: B=1 Mbps, D = 50 ms
• RTT (Round Trip Time) = 2D = 100 ms
• How many packets/sec?
• 10

• Usage efficiency if packets are 10kb?
• (10,000 x 10) / (1 x 106) = 10%

•What is the efficiency if B=10 Mbps?
• 1%

CSE 461 University of Washington 5

Sliding Window

•Generalization of stop-and-wait
• Allows W packets to be outstanding
• Can send W packets per RTT (=2D)

• Pipelining improves performance
• Need W=2BD to fill network path

CSE 461 University of Washington 6

Sliding Window (2)

What W will use the network capacity with 10kb packets?

• Ex: B=1 Mbps, D = 50 ms
• 2BD = 2 x 106 x 50/1000 = 100 Kb
• W = 100 kb/10 = 10 packets

• Ex: What if B=10 Mbps?
• W = 100 packets

CSE 461 University of Washington 7

Sliding Window Protocol

•Many variations, depending on how buffers,
acknowledgements, and retransmissions are
handled

•Go-Back-N
• Simplest version, can be inefficient

•Selective Repeat
•More complex, better performance

CSE 461 University of Washington 8

Sender Sliding Window

•Sender buffers up to W segments until they are
acknowledged
• LFS=LAST FRAME SENT, LAR=LAST ACK REC’D
• Sends while LFS – LAR ≤ W

CSE 461 University of Washington 9

.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR LFS

W=5

Acked Unacked 3 ..Unavailable

Available

seq. number

Sliding
Window

Sender Sliding Window (2)

•Transport accepts another segment of data from the
Application ...
• Transport sends it (LFS–LAR à 5)

CSE 461 University of Washington 10

.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR

W=5

Acked Unacked 3 ..Unavailable

Sent

seq. number

Sliding
Window

LFS

Sender Sliding Window (3)

•Next higher ACK arrives from peer…
•Window advances, buffer is freed
• LFS–LAR à 4 (can send one more)

CSE 461 University of Washington 11

.. 5 6 7 .. 2 3 4 5 2 3 ..

LAR

W=5

Acked Unacked 3 ..Unavailable

Available

seq. number

Sliding
Window

LFS

Receiver Sliding Window – Go-Back-N

•Receiver keeps only a single packet buffer for the
next segment
• State variable, LAS = LAST ACK SENT

•On receive:
• If seq. number is LAS+1, accept and pass it to app, update

LAS, send ACK
• Otherwise discard (as out of order)

CSE 461 University of Washington 12

Flow control recap

Goal: Match sending speed to receiver’s capacity

3 increasingly complex and increasingly efficient solutions
• Stop and wait
• Sliding window: go back N
• Sliding window: selective repeat

Go back N

Sender sent packets 42, 43, 44, 45, …

If 43 is lost, all of 43, 44, 45 must be resent

Receiver does not buffer out of order packets (simple)

Receiver Sliding Window – Selective Repeat

• Receiver passes data to app in order, and buffers out-of-
order segments to reduce retransmissions

• ACK conveys highest in-order segment, plus hints about out-
of-order segments
• Ex: I got everything up to 42 (LAS), and got 44, 45

• TCP uses a selective repeat design; we’ll see the details later

CSE 461 University of Washington 15

Receiver Sliding Window – Selective Repeat (2)

•Buffers W segments, keeps state variable LAS = LAST
ACK SENT

•On receive:
• Buffer segments [LAS+1, LAS+W]
• Send app in-order segments from LAS+1, and update LAS
• Send ACK for LAS regardless

CSE 461 University of Washington 16

5

Sender Sliding Window – Selective Repeat

•Keep normal sliding window
• If out-of-order ACK arrives
• Send LAR+1 again!

CSE 461 University of Washington 17

.. 5 6 7 .. 2 4 5 3 ..

LAR

W=5

Acked Unacked 3 ..Unavailable

Ack Arrives Out of Order!

seq. number

Sliding
Window

LFS

..

5

Sender Sliding Window – Selective Repeat (2)

•Keep normal sliding window
• If in-order ACK arrives
•Move window and LAR, send more messages

CSE 461 University of Washington 18

.. 5 6 7 .. 4 5 3 ..

LAR

W=5

Acked Unacked 3 ..

In-order ack arrives…

seq. number

Sliding
Window

LFS

....
Now Available

Sliding Window – Retransmissions

•Go-Back-N uses a single timer to detect losses
• On timeout, resends buffered packets starting at LAR+1

•Selective Repeat uses a timer per unacked segment
to detect losses
• On timeout for segment, resend it
• Hope to resend fewer segments

CSE 461 University of Washington 19

Sequence Numbers

Need more than 0/1 for Stop-and-Wait … but how many?
• For Selective Repeat: 2W seq numbers
• W for packets, plus W for earlier acks

• For Go-Back-N: W+1 sequence numbers

Typically implement seq. number with an N-bit counter that
wraps around at 2N—1
• E.g., N=8: …, 253, 254, 255, 0, 1, 2, 3, …

CSE 461 University of Washington 20

Sequence Time Plot

CSE 461 University of Washington 21

Time

Se
q.

 N
um

be
r

Acks
(at Receiver)

Delay (=RTT/2)

Transmissions
(at Sender)

Sequence Time Plot (2)

CSE 461 University of Washington 22

Time

Se
q.

 N
um

be
r

Go-Back-N scenario

Sequence Time Plot (3)

CSE 461 University of Washington 23

Time

Se
q.

 N
um

be
r Loss

Timeout

Retransmissions

ACK Clocking

Sliding Window ACK Clock

•Typically, the sender does not know B or D
•Each new ACK advances the sliding window and lets

a new segment enter the network
• ACKs “clock” data segments

CSE 461 University of Washington 25

Ack 1 2 3 4 5 6 7 8 9 10

20 19 18 17 16 15 14 13 12 11 Data

Benefit of ACK Clocking

•Consider what happens when sender injects a burst
of segments into the network

CSE 461 University of Washington 26

Fast link Fast linkSlow (bottleneck) link

Queue

Benefit of ACK Clocking (2)

•Segments are buffered and spread out on slow link

CSE 461 University of Washington 27

Fast link Fast linkSlow (bottleneck) link

Segments
“spread out”

Benefit of ACK Clocking (3)

•ACKs maintain the spread back to the original sender

CSE 461 University of Washington 28

Slow link
Acks maintain spread

Benefit of ACK Clocking (4)

•Sender clocks new segments with the spread
• Now sending at the bottleneck link without queuing!

CSE 461 University of Washington 29

Slow link

Segments spread Queue no longer builds

Benefit of ACK Clocking (4)

•Helps run with low levels of loss and delay!
•The network smooths out the burst of data segments
•ACK clock transfers this smooth timing back to sender
•Subsequent data segments are not sent in bursts so do

not queue up in the network

CSE 461 University of Washington 30

TCP Uses ACK Clocking

•TCP uses a sliding window because of the value of
ACK clocking
•Sliding window controls how many segments are

inside the network
•TCP only sends small bursts of segments to let the

network keep the traffic smooth

CSE 461 University of Washington 31

Problem

•Sliding window has pipelining to keep network busy
•What if the receiver is overloaded?

CSE 461 University of Washington 32

Streaming video
Big Iron Wee Mobile

Arg …

Receiver Sliding Window

•Consider receiver with W buffers
• LAS=LAST ACK SENT
• app pulls in-order data from buffer with recv() call

CSE 461 University of Washington 33

Sliding
Window

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too high

seq. number

555 5Acceptable

Receiver Sliding Window (2)

•Suppose the next two segments arrive but app does
not call recv()

CSE 461 University of Washington 34

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too high

seq. number

555 5Acceptable

Receiver Sliding Window (3)

•Suppose the next two segments arrive but app does
not call recv()
• LAS rises, but we can’t slide window!

CSE 461 University of Washington 35

.. 5 6 7 5 2 3 ..

LAS

W=5

Finished 3 ..Too high

seq. number

555 5Acked

Receiver Sliding Window (4)

•Further segments arrive (in order) we fill buffer
•Must drop segments until app recvs!

CSE 461 University of Washington 36

Nothing
Acceptable!

.. 5 6 7 5 2 3 ..

W=5

Finished 3 ..Too high

seq. number

555 5Acked

LAS

Receiver Sliding Window (5)

•App recv() takes two segments
•Window slides (phew)

CSE 461 University of Washington 37

Acceptable

.. 5 6 7 5 2 3 ..

W=5

Finished 3 ..

seq. number

555 5Acked

LAS

Flow Control

•Avoid loss at receiver by telling sender the available
buffer space
•WIN=#Acceptable, not W (from LAS)

CSE 461 University of Washington 38

Acceptable

.. 5 6 7 5 2 3 ..

W=5

Finished 3 ..

seq. number

555 5Acked

LAS

Flow Control (2)

•Sender uses lower of the sliding window and flow
control window (WIN) as the effective window size

CSE 461 University of Washington 39

Acceptable

.. 5 6 7 5 2 3 ..

LAS

W=3

Finished 3 ..Too high

seq. number

555 5Acked

CSE 461 University of Washington 40

Flow Control (3)

•TCP-style example
• SEQ/ACK sliding window
• Flow control with WIN
• SEQ + length < ACK+WIN
• 4KB buffer at receiver
• Circular buffer of bytes

Topic

•How to set the timeout for sending a retransmission
• Adapting to the network path

CSE 461 University of Washington 41

Lost?

Network

Retransmissions

•With sliding window, detecting loss with timeout
• Set timer when a segment is sent
• Cancel timer when ack is received
• If timer fires, retransmit data as lost

CSE 461 University of Washington 42

Retransmit!

Timeout Problem

•Timeout should be “just right”
• Too long à inefficient network capacity use
• Too short à spurious resends waste network capacity

•But what is “just right”?
• Easy to set on a LAN (Link)
• Short, fixed, predictable RTT

• Hard on the Internet (Transport)
• Wide range, variable RTT

CSE 461 University of Washington 43

Example of RTTs

CSE 461 University of Washington 44

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

Ro
un

d
Tr

ip
 T

im
e

(m
s)

BCNàSEAàBCN

Seconds

Example of RTTs (2)

CSE 461 University of Washington 45

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

Ro
un

d
Tr

ip
 T

im
e

(m
s) Variation due to queuing at routers,

changes in network paths, etc.

BCNàSEAàBCN

Propagation (+transmission) delay ≈ 2D

Seconds

Example of RTTs (3)

CSE 461 University of Washington 46

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

Ro
un

d
Tr

ip
 T

im
e

(m
s)

Timer too high!

Timer too low!

Need to adapt to the
network conditions

Seconds

Adaptive Timeout

• Smoothed estimates of the RTT (1) and variance in RTT (2)
• Update estimates with a moving average
1. SRTTN+1 = 0.9*SRTTN + 0.1*RTTN+1
2. SvarN+1 = 0.9*SvarN + 0.1*|RTTN+1– SRTTN+1|

• Set timeout to a multiple of estimates
• To estimate the upper RTT in practice
• TCP TimeoutN = SRTTN + 4*SvarN

CSE 461 University of Washington 47

Example of Adaptive Timeout

CSE 461 University of Washington 48

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

RT
T

(m
s)

SRTT

Svar

Seconds

Example of Adaptive Timeout (2)

CSE 461 University of Washington 49

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140 160 180 200

RT
T

(m
s)

Timeout (SRTT + 4*Svar)

Early
timeout

Seconds

Adaptive Timeout (2)

•Simple to compute, does a good job of tracking
actual RTT
• Little “headroom” to lower
• Yet very few early timeouts

•Turns out to be important for good performance
and robustness

CSE 461 University of Washington 50

