Flow Control

CSE 461
Ratul Mahajan



Flow control goal

Match transmission speed to reception capacity
e Otherwise data will be lost



ARQ: Automatic repeat query
* ARQ with one message at a time is Stop-and-Wait

Sender Receiver
Frame O

\

Timeout ACK 0 Time

ACK 1




Limitation of Stop-and-Wait

* |t allows only a single message to be outstanding
from the sender:

* Fine for LAN (only one frame fits in network anyhow)
* Not efficient for network paths with longer delays

[ 1]

]



Limitation of Stop-and-Wait (2)

* Example: B=1 Mbps, D =50 ms
* RTT (Round Trip Time) = 2D = 100 ms
 How many packets/sec?
10
* Usage efficiency if packets are 10kb?
* (10,000 x 10) / (1 x 10°) = 10%

* What is the efficiency if B=10 Mbps?
* 1%



Sliding Window

* Generalization of stop-and-wait

* Allows W packets to be outstanding
e Can send W packets per RTT (=2D)

R

* Pipelining improves performance
* Need W=2BD to fill network path




Sliding Window (2)
What W will use the network capacity with 10kb packets?

* Ex: B=1 Mbps, D =50 ms
*« 2BD =2 x 10° x 50/1000 = 100 Kb
* W =100 kb/10 = 10 packets

* Ex: What if B=10 Mbps?
* W =100 packets



Sliding Window Protocol

* Many variations, depending on how buffers,

acknowledgements, and retransmissions are
handled

* Go-Back-N
e Simplest version, can be inefficient

*Selective Repeat
* More complex, better performance




Sender Sliding Window

* Sender buffers up to W segments until they are
acknowledged

e L FS=LAST FRAME SENT, LAR=LAST ACK REC'D
e Sends while LFS— LAR<W

Sliding W=5 _
Window /Avallable
Ackedl Unacked Unavailable | ..
| ! ,

LAR LFS seq. number



Sender Sliding Window (2)

* Transport accepts another segment of data from the
Application ...
* Transport sends it (LFS—LAR —> 5)

Sliding W=5
Window /Sent
Ackedl WUnacked Unavailable | ..
! | X

LAR LFS seq. number



Sender Sliding Window (3)

* Next higher ACK arrives from peer...

 Window advances, buffer is freed
* LFS—LAR = 4 (can send one more)

le.

N

Sliding W=5 .
Window /Avallable
Ackedl Unacke Unavai‘lat
T T ,
LAR LFS seq. number



Receiver Sliding Window — Go-Back-N

* Receiver keeps only a single packet buffer for the
next segment
e State variable, LAS = LAST ACK SENT

* On receive:

* If seq. number is LAS+1, accept and pass it to app, update
LAS, send ACK

e Otherwise discard (as out of order)



Flow control recap

Goal: Match sending speed to receiver’s capacity

3 increasingly complex and increasingly efficient solutions
e Stop and wait
* Sliding window: go back N
 Sliding window: selective repeat



Go back N

Sender sent packets 42, 43, 44, 45, ...
If 43 is lost, all of 43, 44, 45 must be resent

Receiver does not buffer out of order packets (simple)



Receiver Sliding Window — Selective Repeat

* Receiver passes data to app in order, and buffers out-of-
order segments to reduce retransmissions

* ACK conveys highest in-order segment, plus hints about out-
of-order segments

* Ex: | got everything up to 42 (LAS), and got 44, 45

* TCP uses a selective repeat design; we’ll see the details later



Receiver Sliding Window — Selective Repeat (2)

* Buffers W segments, keeps state variable LAS = LAsT
ACK SENT

*On receive:
* Buffer segments [LAS+1, LAS+W]
* Send app in-order segments from LAS+1, and update LAS
* Send ACK for LAS regardless



Sender Sliding Window — Selective Repeat

* Keep normal sliding window

 |f out-of-order ACK arrives
e Send LAR+1 again!

W=5
SI.Idmg Ack Arrives Out of Order!
Window
Ackedl Unacked | \Unavailable.
! |

N

LAR LFS seq. number



Sender Sliding Window — Selective Repeat (2)

* Keep normal sliding window

* If in-order ACK arrives

* Move window and LAR, send more messages
W=5

S!iding In-order ack arrives...
Window / , Now Available
Ackedl Unacked | | “
! X
LAR LFS seq. number



Sliding Window — Retransmissions

* Go-Back-N uses a single timer to detect losses
* On timeout, resends buffered packets starting at LAR+1

* Selective Repeat uses a timer per unacked segment
to detect losses

* On timeout for segment, resend it
* Hope to resend fewer segments



Sequence Numbers

Need more than 0/1 for Stop-and-Wait ... but how many?
* For Selective Repeat: 2W seq numbers
* W for packets, plus W for earlier acks
* For Go-Back-N: W+1 sequence numbers

Typically implement seq. number with an N-bit counter that
wraps around at 2N—1

*E.g., N=8: .., 253,254, 255,0,1, 2,3, ..



Sequence Time Plot

Transmissions

(at Sender) \

\ Acks

(at Receiver)

Seq. Number

Delay (=RTT/2)

Time

N
7



Seq. Number

Sequence Time Plot (2)

Go-Back-N scenario

Time

v



Sequence Time Plot (3)

Retransm|55|ons

\@ /

Timeout

Seq. Number

Time

v



ACK Clocking



Sliding Window ACK Clock

* Typically, the sender does not know B or D

* Each new Ack advances the sliding window and lets
a new segment enter the network
* ACKs “clock” data segments

2019181716151413 12 11 Data

i_:

10

I Lniylyy!
567829

Ack1l 2 3 4




Benefit of ACK Clocking

* Consider what happens when sender injects a burst
of segments into the network

Fast link Slow (bottleneck) Imk Fast link

CSE 461 University of Washington

26



Benefit of ACK Clocking (2)

* Segments are buffered and spread out on slow link

!

Segments

——

Fast link

Slow (bottleneck) link

CSE 461 University of Washington

“spread out”
A
( \
—> %\_
\/

Fast link

==

27



Benefit of ACK Clocking (3)

* ACKS maintain the spread back to the original sender

NP NI NP e

4
Slow link \‘{\

Y
Acks maintain spread

CSE 461 University of Washington 28



Benefit of ACK Clocking (4)

* Sender clocks new segments with the spread
* Now sending at the bottleneck link without queuing!

Segments spread _AQueue no longer builds
A
%_5

Slow link



Benefit of ACK Clocking (4)

* Helps run with low levels of loss and delay!
* The network smooths out the burst of data segments
* ACK clock transfers this smooth timing back to sender

* Subsequent data segments are not sent in bursts so do
not queue up in the network



TCP Uses ACK Clocking

* TCP uses a sliding window because of the value of
ACK clocking

*Sliding window controls how many segments are
inside the network

* TCP only sends small bursts of segments to let the
network keep the traffic smooth



Problem

*Sliding window has pipelining to keep network busy
* What if the receiver is overloaded?

Streaming video I

Big Iron Wee Mobile

CSE 461 University of Washington 32



Receiver Sliding Window

* Consider receiver with W buffers
o LAS=LAST ACK SENT
* app pulls in-order data from buffer with recv() call

Sliding

Window W=5

&=

nis‘h ed| |Acgeptable 0 high

T

LAS seq. numb,er

F

D
—]
(@)




Receiver Sliding Window (2)

* Suppose the next two segments arrive but app does
not call recv()

W=5

-
D

—]

(@)

'nis‘hed Acgeptable

I

LAS seq. numb,er

0 hligh




Receiver Sliding Window (3)

* Suppose the next two segments arrive but app does
not call recv()
* LAS rises, but we can’t slide window!

W=5

- |

'nis‘h ed |Acked Tao high

I

LAS seq. number




Receiver Sliding Window (4)

* Further segments arrive (in order) we fill buffer
* Must drop segments until app recvs!

Nothing
W=5 Acceptable!
Finished |Agkec Too high

T

LAS seq. numb,er




Receiver Sliding Window (5)

* App recv() takes two segments

* Window slides (phew)

W=5 Acceptable

2

/

- |

inish

ed

Ac

eo

I

LAS

seq. number



Flow Control

* Avoid loss at receiver by telling sender the available
buffer space
* WIN=#Acceptable, not W (from LAS)

W=5 Acceptable
/

2

inished Ackec

- |

T

LAS seq. numb,er




Flow Control (2)

* Sender uses lower of the sliding window and flow
control window (WIN) as the effective window size

W=3 Acceptable

/

'nis‘h ed |Acked Tao high

I \

LAS sed. numb,er

- |




Flow Control (3)

Sender Receiver Receiver's
Application buffer
does a 2K 0 4K
° I I write -
- [ — mpty
TCP-style example —
——ISEQ=G7_ l

* SEQ/ACK sliding window T =
i FlOW Contr0| With WIN Qpplicag&n

SEQ + length < ACK+WIN T e
e 4KB buffer at receiver senderis eI e ~___ Aepication

TACK = I reads 2K

.......

* Circular buffer of bytes e

.....
. o

" <[ =]~
Sender may -

send up to 2K —=

CSE 461 University of Washington 40



Topic

* How to set the timeout for sending a retransmission
* Adapting to the network path

S

Network




Retransmissions

* With sliding window, detecting loss with timeout
* Set timer when a segment is sent
* Cancel timer when ack is received
* |If timer fires, retransmit data as lost

Retransmit! J

—>




Timeout Problem

* Timeout should be “just right”

* Too long =2 inefficient network capacity use
* Too short = spurious resends waste network capacity

* But what is “just right”?

e Easy to set on a LAN (Link)
e Short, fixed, predictable RTT

* Hard on the Internet (Transport)
* Wide range, variable RTT



Example of RTTs

1000

900

(0]
o
o

~
o
o

(o))
o
o

400

Round Trip Time (ms)

N
o
o

100

BCN->SEA->BCN

o

J

b A

20 40 60

80

CSE 461 University of Washington

100

120

140

160

180

200

Seconds

44



Example of RTTs (2)

1000

900

800

e (ms)

Tim

(%
o
o

400

Round Tri

N
o
o

100

BCN->SEA->BCN

Variation due to queuing at routers,

e changes in network paths, etc.

A .
TR AT O LYY

WV VV \a/ L] | | A VA Y 1l ad ¥

=
—
—
D>
—
-

Propagation (+transmission) delay = 2D

20 40 60 80 100 120 140 160 180 200

CSE 461 University of Washington SeCOndS

45



Example of RTTs (3)

1000

900

(0]
o
o

~
o
o

o))
o
o

400 -

Round Trip Time (ms)

N
o
o

100

Timer too high!

Need to adapt to the

network conditions

Timer too low!

J

A.AVAA_/\A_Jn\,AJ\/'LJ\,VA,J\A/\,JA”\,/\A,M’

0 20

40

60

80

100

120

140

CSE 461 University of Washington

160

180

200

Seconds

46



Adaptive Timeout

* Smoothed estimates of the RTT (1) and variance in RTT (2)
e Update estimates with a moving average
1. SRTTy.,=0.9*SRTT, + 0.1*RTT.,
2. Svary,; =0.9*%Svary + 0.1*|RTTy,;— SRTTy.4|

* Set timeout to a multiple of estimates

* To estimate the upper RTT in practice
* TCP Timeout, = SRTTy + 4*Svar,



Example of Adaptive Timeout

1000

900

800

700

600

500

RTT (ms)

ﬁ SRTT
400 . /Jf\"L“\ //
300 1 nj\ﬂ//f U |, 1 /
200 ‘tJ‘\A /V\, P | /\

Svar
0 T T T T T T T T T |
0 20 40 60 80 100 120 140 160 180 200

CSE 461 University of Washington SECOndS 48



Example of Adaptive Timeout (2)

1000
wo  Early
w0 timeout C Timeout (SRTT + 4*Svar)
700 | /
g 600
: 500 ﬁ
ICE 400 A IJN'I’“\ .
300 1 ﬂ!\ﬁ // f U - N /) /
200 ‘JA/V\V L~ ' ..Av J UV U WA VA J V\J
100 A NN
N ~—_~ S~——
0 ‘ ‘ ‘ ! ! ! ‘ ! ! !
0 20 40 60 80 100 120 140 160 180 200

CSE 461 University of Washington SECOndS 49



Adaptive Timeout (2)

*Simple to compute, does a good job of tracking
actual RTT

e Little “headroom” to lower
* Yet very few early timeouts

* Turns out to be important for good performance
and robustness



