
CSE466 Autumn ‘00- 1

Real Time Operating Systems

q What is the basic thing we want the OS to do to help us improve worst case
latency? Enable multithreading

q How? Define an OS time-slice (tick) at which highest priority ‘runnable’ task is
continued. Priority function determines response behavior.

q Simplest Scheduling algorithm: each task gets at most 1 tick at a time to run.
Round Robin Scheduling. Worst case task latency = #tasks*tick. Worst case
run time = ticks/task * #tasks

q Some properties of such system: liveness, safety, fairness, latency,
overhead.

q Other niceties: Device Drivers, Synchronization, Message passing, Memory
Management



CSE466 Autumn ‘00- 2

Features of an Embedded Operating System

q Interrupt latency

q System call overhead (Various functions…task switch, signal, create, delete)

q Memory overhead

q Tasks (threads)

q Scheduling Algorithms

q Communication and synchronization primitives (tools)

q Memory Management



CSE466 Autumn ‘00- 3

Comparative Real Time OSes

38us – 280us
why the variable?

What is this?

Compare to
uClinux at
~400Kbytes.

actually 16
semaphores

what
for?



CSE466 Autumn ‘00- 4

Stack Management



CSE466 Autumn ‘00- 5

Multitasking � state maintained for each task

Running Runnable

Blocked Deleted

time slice

time slice

wait()

signal()

delete()

create()
delete()

only
one task
in this state
at a time

system calls



CSE466 Autumn ‘00- 6

Programmers View of Tiny OS

void tone_isr(void) interrupt … {
process_tones();
if (!--sliceCount) {

updateToneParameters();
sliceCount = SliceSize
isr_send_signal(MUSIC);

}
}
void serial_isr(void) interrupt …{

timeCritical();
os_send_signal(SERIAL);

}
void play(void) _task_ MUSIC {

os_create(SERIAL);
while (1) {os_wait();

process_next_event();}
}
void serial(void) _task_ SERIAL {

while (1) {os_wait();
process_serial_data();} // os_create(MUSIC)?

}

Advantages:
•Deterministic response time
even w/ non deterministic
tasks lengths.
• Incremental development

Resources:
•Task switching overhead
•Memory overhead
•Use of system timer
•Degrades best case response
time.

Tasks are threads



CSE466 Autumn ‘00- 7

Task Diagram

music

serial

music_isr

serial_isr

OS

music time
slice…signal
music task

music time
slice

os time
slice

os time
slice

os time
slice

Char arrives

os time
slice

Music task is never
more than one OS
time slice away

deadline
serial_isr
signals
serial task



CSE466 Autumn ‘00- 8

Interrupt Priorities

q Key question: Is there a bad time to get a tone gen interrupt?

OS

Task1

Task2

tone_isr

context switch: 100-700 cycles



CSE466 Autumn ‘00- 9

Another Solution

q Multiprocessor: Dedicate one processor to each (or a few) tasks.

q Still need synchronization and communication.

q An M-BOX network could be an example of a multiprocessor system.
A synthesizer w/ mutltiple notes and “voices”



CSE466 Autumn ‘00- 10

Process v. Thread

q Process:
Each process runs in a separate address space. Address 0x1 in process
one is not the same memory location as address 0x1 in another process.
Context switching is expensive:
§ need to reload memory management variables
§ may need to invalidate cache or do other cache coherency tricks
§ Anything address based needs to be saved and restored

Threads: lightweight
§ All threads run in the same address space
§ Still have same basic state machine (ready, running, blocked, killed)
§ Still need context switching for registers, stack.



CSE466 Autumn ‘00- 11

Reentrant functions�sharing code not data

q Are there shared functions that we would like to have?
deq?
enq?
next (same for head or tail)?
Q declaration and initialization?

q Can task switching clobber local variables (parameters and automatics)?
What happens when this function is interrupted by the OS?

unsigned char next(unsigned char current, unsigned char size) {

if (current+1 == size) return 0;

else return (current+1);

}

it depends on where the
parameters, automatics, and
spill registers are stored… this
one is probably okay!3 places for parameters

a. Registers
b. fixed locations
c. stack…but not the hardware stack!



CSE466 Autumn ‘00- 12

How about these?

q Is this reentrant?
void disable(void) { ET0 = 0;}

test for reentrancy: no matter how instructions from separate threads are
interleaved, the outcome for all threads will be the same as if there were
no other thread.

q Is this reentrant? … note: we don’t care about order
void setPriority(bit sHi) {PS = sHi; PT = ~sHi;}

q When do we need reentrancy in non-multithreaded programming?

q How is this normally managed?

PT <- 1

PT 0

PS 1

PS 0

Thread 2 (sHi = 1)Thread 1 (sHi = 0)



CSE466 Autumn ‘00- 13

Examples of Reentrant functions

int sum(tree) {
if (!tree) return 0;
return sum(tree->left) + sum(tree->right) + tree->val;

}
reason for reentrancy: re-use code
The key to reentrancy: relative addressing

Other examples of reentrancy:
two tasks share a function, ISR and task share a function



CSE466 Autumn ‘00- 14

Reentrancy in Keil C51

q In C51, most parameter passing is done through registers (up to three parameters).
Then fixed memory locations are used. Register method is reentrant, the other isn’t.

q Local (automatic) variables in functions are also mapped to fixed memory locations (w/
overlaying)…definitely not reentrant.

q How can we solve this: declare functions to be reentrant as in:
unsigned char next(unsigned char current, unsigned char size) reentrant {

if (current+1 == size) return 0;
else return (current+1);

}

q BUT…the stack used for reentrant functions is NOT the same as the hardware stack used for
return address, and ISR/TASK context switching. There is a separate “reentrant” stack used for
that, which is not protected by the TINY OS. It’s a different region of memory, and a fixed memory
location is used for the reentrant stack pointer. So this works for FULL and for recursion (no OS).

q Conclusion…you can have shared functions in TINY if you:
convince yourself that all parameters are passed through registers
convince yourself are no local variables that use fixed memory locations (compiler can
allocate those to registers too)
be sure not not change HW settings non-atomically
or… you disable context switching in shared functions by disabling T0 interrupts
§ Think of shared functions as critical sections. Does this impact timing constraints or

interrupt latency?



CSE466 Autumn ‘00- 15

Implementation Example: Reentrant, Encapsulated Queue

typedef struct qstruct {
unsigned char head;
unsigned char tail;
unsigned char *array;
unsigned char size;

} fifo;

fifo Q;
unsigned char array[QSIZE];
void producer(void) _task_ 0 {

unsigned char i;
bit fail;
initq(&Q, array, QSIZE);
os_create_task(1);
while (1) {

do { disable();
fail = enq(&Q,i);
enable();

} while (fail);
i++; // simulated data

}
void consumer(void) _task_ 1 {

bit fail;
unsigned char i;
while (1) {

os_wait();
disable();
fail = deq(&Q,&i);
enable();
if (fail)…else use(I);

}
}

Shared functions are okay if we
disallow task switch during calls.
why? re-entrant stack not
protected by Tiny OS.
But shared C libraries are okay.
Why? not sure yet.

is this okay for timing if
we don’t use it in Tone
Gen ISR (overhead)?



CSE466 Autumn ‘00- 16

Priority: Preemptive vs. Non preemptive

OS

T1/hi

T2/lo

ISR

Pre-emptive: All tasks have a different priority…
hi priority task can preempt low priority task. Highest
priority task always runs to completion (wait).

Advantage: Lower latency, faster response for high
priority tasks.

Disadvantage: Potential to starve a low priority task
Tiny: no priority, round robin only. No starvation.
Priority Inversion: when T2 disables interrupts

signal T2 signal T1, preempt T2 (time slice not up)

T2 Completes



CSE466 Autumn ‘00- 17

Coming Up

q A little more on OS
Real Time Scheduling Algorithms
Synchronization: Semaphores and Deadlock avoidance
Interprocess Communication
Concept of shared resources: Devices and Drivers

q Future
Linux and the Cerfboards
Networking
Product Safety
Java/Object Oriented Programming for Embedded Systems

q Design Meeting (Product Ideas…)


