Lab Issues and Questions?

q Daily quiz: How is an interrupt different than a subroutine call?
q Limitations of the assembler
Seems to have trouble with SFR access. Stick with Timer 0 for this lab, as suggested by Douglas
I know that the simulator does not support Timer 2.
Pullup on port - 0

Digital to Analog Converter

Effective network is
DB[7:0] = 10000000

$$
\text { out } 1=10 / 30=0.33 \mathrm{Vref} \quad \mathrm{MSB}
$$

each bit pumps more current into Rfb in different amounts depending on position
$\mathrm{DB}[7: 0]=10000001$
out $1=10 /(20| | 90)=0.38 \mathrm{Vref}$

Digital-to-Analog Converter

FUNCTIONAL BLOCK DIAGRAM

WRITE CYCLE TIMING DIAGRAM

Is Constant Rate Sampling Okay?

q Just like CD player: runs a 44 KHz ...max frequency it can create is 22 KHz ,
q A CD recording of a pure 22 HKz tone would look like a square/triangle wave on the output of the DAC.

two frequencies with same rate. How fast can you go?

Frequency range w/ fixed sample rate

To get a psuedo-sine wave, what is the max Stride for our lookup table?
§ 64: 64/156 (5K) $=1.125 \mathrm{KHz}$
Let Stride $=1$ and Sample Rate $=5 \mathrm{KHz}$
§ output frequency $=5 \mathrm{KHz} / 256=19.531 \mathrm{~Hz}$
§ low frequencies generate a smoother waveform
Let Stride = n
§ output frequency $=5 \mathrm{KHz} /(256 / \mathrm{n})=\mathrm{n}^{\star}(5 \mathrm{KHz} / 256)$
Solve for output frequency
§ Stride = (freq*256)/5KHz
§ Middle C $=262 \mathrm{~Hz}$, so stride $=13.41$ can we just round this off? Yes for this week's lab.
$\S D=294$, so stride $=15.05$
What happens for low frequencies
§ Low F: $87.31 \mathrm{~Hz} \quad$ stride $=4.74$
§ Low E: $82.42 \mathrm{~Hz} \quad$ stride $=4.47$
§ what do we do with non-integral strides?

Software Perspective

In software (always through indirect addressing)

MOV R0, \#external_address
MOVX A, @Rx \# uses only 8-bit address for external RAM

Or
MOV DPL, \#external_address_high
MOV DPH, \#external_address_low
MOVX A, @DPTR;
Note that MOVC A, @DPTR references code space

Yet another address space (declare as xdata or pdata)

External Read Cycle

Figure 35. External Data Memory Read Cycle

How fast does \mid STATE 4 \mid STATE 5 \mid STAKE 6 \mid STATE 1 \mid STATE 2 \mid STATE 3 \mid STATE 4 \mid STATE 5 \mid $\left|P_{1}\right| P_{2}\left|P_{1}\right| P_{2}\left|P_{1}\right| P_{2}\left|P_{1}\right| P_{2}\left|P_{1}\right| P_{2}\left|P_{1}\right| P_{2}\left|P_{1}\right| P_{2}\left|P_{1}\right| P_{2} \mid$

The RAM have to
Be ?
7 osc. Cycles

Recall design Of P0: active pullup And pulldown so
Data bus can "float"

Don't need pullups

when using P0 as external data bus instead of as regular port

External Memory - Write Cycle

Figure 36. External Data Memory Write Cycle

Multiplex data and Low address on P0 (destroys value on
 P0)

P2 used for high
 byte, returns
To port value after use.

$$
\left|\begin{array}{l}
\text { STATE } \\
\mathrm{P}_{1}\left|\mathrm{P}_{2}\right| \mathrm{P}_{1}\left|\mathrm{P}_{2}\right| \mathrm{P}_{1}\left|\mathrm{P}_{2}\right| \mathrm{P}_{1}\left|\mathrm{P}_{2}\right| \mathrm{P}_{1}\left|\mathrm{P}_{2}\right| \mathrm{P}_{1}\left|\mathrm{P}_{2}\right| \mathrm{P}_{1}\left|\mathrm{P}_{2}\right| \mathrm{P}_{1} \mid \mathrm{P}_{2}
\end{array}\right|
$$

CSE466 Autumn ‘00-8

Circuit for external Data Mem.?

CSE466 Autumn '00-9

Homework:

Draw this schematic and write equations for the logic in the PLD
And you thought 370 didn't matter!

Glue Logic Design

1. Define External Memory Map (64K): addr[14:0]

Ram: Upper 32 K enable if address $=1 \mathrm{xxxxxxxxxxxxxx}$
LCD: 0-31 enable if address $=0 \times x x x x x x 00 \times x x x x$
DAC2: 32 enable if address $=0 \times x \times x \times x \times 01 \times x x x x$
ADC1: 64 enable if address $=0 \times x x x x x x 10 \times x x x x$
2. Come up w/ address decoder logic for each case (many to $1 \mathrm{ok}, 1$ to many not okay!)
$\backslash \mathrm{E} 4=(\mathrm{A} 14)^{\prime}$ covers all upper 32 K addresses
\E3 = (A14'A6’A5’)' covers 2^12 addresses including 0-31 but excluding upper $32 \mathrm{~K}, 64,32$
$\backslash \mathrm{E} 2=\left(\mathrm{A} 14{ }^{\prime} \mathrm{A} 6^{\prime} \mathrm{A} 5\right)^{\prime}$ covers $2^{\wedge} 13$ addresses but excludes upper 32K, 64, 0-31
\E1 $=(\text { A14'A6A5’ })^{\prime}$ covers $2^{\wedge} 13$ addresses but excludes upper $32 \mathrm{~K}, 32,0-31$

Power Supply Noise

So what? Could cause processor to reset/go to unknown state, mess up analog voltage readings, cause electromagnetic interference

How big should cap be?
Depends on speed and inductance of the supply, and $\Delta \mathrm{I}$ when switched Typical values for digital boards are . $1 \mathrm{uF} / \mathrm{IC}$ placed very close to IC
....then there's capacitive loads

Capacitive Loads

Charge Sharing

1. Initially $\mathrm{Q}_{1}=\mathrm{V}_{0} \mathrm{C}_{1}$
2. Then close switch, what is $\mathrm{V}^{\prime} / \mathrm{V}_{0}$?
3. $\mathbf{V}_{0}=\mathbf{Q}_{1} / \mathbf{C}_{1}$ (initial condition)
4. $\mathbf{Q}_{1}{ }^{\prime}+\mathbf{Q}_{2}{ }^{\boldsymbol{\prime}}=\mathbf{Q}_{1}$ (post condition)
5. $\mathrm{Q}_{1}=\mathrm{V}^{\prime} \mathrm{C}_{1}+\mathrm{V}^{\prime} \mathrm{C}_{2}=\mathrm{V}^{\prime}\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)$
6. $\mathrm{V}^{\prime}=\mathrm{Q}_{1} /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)$
7. $\mathrm{V}^{\prime} / \mathrm{V} 0=\mathrm{Q}_{1} /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right) * \mathrm{C}_{1} / \mathrm{Q}_{1}$
8. $\mathrm{V}^{\prime} / \mathrm{V}_{0}=\mathrm{C}_{1} /\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)$

If C_{1} dominates, then $\mathrm{V}^{\prime} \sim \mathrm{V}_{0}$
If $\mathrm{C}_{1}=10 \mathrm{C}_{2}$ Then $\mathrm{V}_{1} / \mathrm{V}_{0}=10 / 11$

