
1

Programming TinyOS

Some of the content from these slides were
adapted from the Crossbow Tutorials and from the
TinyOS website from Mobsys Tutorials

Lesson 2

Execution Flow

� Events generated by
interrupts preempt tasks

� Tasks do not preempt tasksHardware

Interrupts

ev
en

ts

commands

Tasks

2

Commands, Events & Tasks

{
...
status = call CmdName(args)
...
} command CmdName(args) {

...
return status;
}

{
...
status = signal EvtName(args)
...
}

event EvtName)(args) {
...
return status;
}

{
...
post TskName();
...
}

task void TskName {
...
}

Split Phase Operations

Call Command
Return value = okay or busy

Done event pass data through parameters
Okay, failed, etc.

Task ()
Signal doneEvent handler

Component2

Component1

Return busy else
Post Task return okay

3

Basic Structure

� Interfaces (xxx.nc)
� Specifies functionality to outside world
� what commands can be called
� what events need handling

� Software Components
– Module (xxxM.nc)

� Code implementation
� Code for Interface functions

– Configuration (xxxC.nc)
� Linking/wiring of components
� When top level app,

drop C from filename xxx.nc

appxxx.nc
(wires)

interfaceA.nc

interfaceB.nc

comp3M.nc
(code)

interfaceA.nc

comp1C.nc
(wires)

interfaceB.nc

interfaceA.nc

comp2M.nc
(code)

Main.nc

RadioTimingSecDedEncode

The Complete Application

RadioCRCPacket

UART

UARTnoCRCPacket

ADC

phototemp

AMStandard

ClockC

bi
t

by
te

pa
ck

et

SenseToRfm

HW

SW

IntToRfm

MicaHighSpeedRadioM

RandomLFSRSPIByteFIFO

SlavePin

noCRCPacket

Timer photo

ChannelMon

generic comm

CRCfilter

5/5/2003 MobiSys Tutorial, San Francisco

NOTE: This is NOT the radio
stack we will be using

4

Interfaces

� A component specifies a set of interfaces by
which it is connected to other components
– provides a set of interfaces to others
– uses a set of interfaces provided by others

� Interfaces are bi-directional
– include commands and events

� Interface methods are the external
namespace of the component

Interfaces can Fan-out

� nesC wiring allows interfaces to “Fan-out”
� A single “provides” can be wired to more

than one “uses” and vice versa.
� Provide a combine function to handle result

implementation {
components Main, Counter, IntToLeds, TimerC;

Main.StdControl -> IntToLeds.StdControl;
Main.StdControl -> Counter.StdControl;
Main.StdControl -> TimerC.StdControl;

result_t ok1, ok2, ok3;
….
ok1 = call UARTControl.init();
ok2 = call RadioControl.init();
ok3 = call Leds.init();
….
return rcombine3(ok1, ok2, ok3);

5

Exercise

� Which of the following goes inside the module you
are implementing if we assume you are the “user” of
the interface? (e.g. using the radio stack)
NOTE: Not all of these choices are exposed through an interface.
Assume those that are not exposed are implemented in your module.

– post TaskA();
– call CommandB(args);
– signal EventC(args);
– TaskA implementation
– CommandB implementation
– EventC implementation

� A component can have multiple instances of
an interface by giving them different names

module SenseM {
provides {

interface StdControl;
}
uses {

interface Timer;
interface ADC;
interface StdControl as ADCControl;
interface Leds;

}

provides {
interface StdControl as Control;

}
uses {

….
interface SendMsg as SendRFM;
interface ReceiveMsg as ReceiveRFM;
interface SendMsg as SendWriteRFM;
interface ReceiveMsg as ReceiveRFM;

Naming Multiple Instances

6

Parameterized Interface

� A parameterized interface allows a component to
provide multiple instances of an interface that are
parameterized by a value

provides interface Timer[uint8_t id];

� By wiring Timer to a separate instance of the Timer
interface provided by TimerC, each component can
effectively get its own "private" timer.

� Use a compile-time constant function unique() to
ensure your index will be unique.

SenseM.Timer -> TimerC.Timer[unique("Timer")];

configuration CntToLeds {
}
implementation {

components Main, Counter, IntToLeds, TimerC;

Main.StdControl -> IntToLeds.StdControl;
Main.StdControl -> Counter.StdControl;
Main.StdControl -> TimerC.StdControl;
Counter.Timer ->TimerC.Timer[unique("Timer")];
Counter.IntOutput -> IntToLeds.IntOutput;

}

tos/system/RealMain.nc

tos/interfaces/StdControl.nc

tos/interfaces/StdControl.nc

tos/interfaces/Timer.nc tos/interfaces/IntOutput.nc

tos/system/TimerC.nc tos/lib/counters/IntToLeds.nc

tos/interfaces/Timer.nc tos/interfaces/IntOutput.nc

Counter.nc

tos/interfaces/StdControl.nc tos/interfaces/StdControl.nc

7

Exercise

GenericComm

AMStandard

UARTFramedPacket

Framer FramerACK

UART

HPLUARTC

Packet is
formed

Concurrency Model

� Asynchronous Code (AC)
– Any code that is reachable from an interrupt handler

� Synchronous Code (SC)
– Any code that is ONLY reachable from a task
– Boot sequence

� Potential race conditions
– Asynchronous Code and Synchronous Code
– Asynchronous Code and Asynchronous Code
– Non-preemption eliminates data races among tasks

� nesC reports potential data races to the programmer at
compile time (new with version 1.1)

� Use “atomic” statement when needed
� “Async” keyword is used to declare asynchronous code

8

Naming Convention

� Use mixed case with the first letter of word capitalized
� Interfaces (Xxxx.nc)
� Components

– Configuration (XxxC.nc)
– Module (XxxxM.nc)

� Application – Top level Component (Xxxx.nc)
� Commands, Events, & Tasks

– First letter lowercase
– If a command/event pair form a split-phase operation, Event

should be the command with the suffix “Done” or “Complete”
– Prefix commands with “TOSH_” that touch hardware

� Variables – First letter lowercase
� Constants – All Caps

Debugging

� Cover in more detail in later lectures
� Applications can be built to run on the PC (TOSSIM)

– Good to debug
– Does not perfectly simulate the hardware

� Toggle LED:
– Can only get so much information from 1 LED.
– Very useful to indicate:

� Radio packet transmit/receive.
� Timer fired.
� Sensor activation.

