
1

CSE 466 - Winter 2007 Wireless Sensor Networks 1

Operating systems for embedded systems

Embedded operating systems
How do they differ from desktop operating systems?

Programming model
Process-based
Event-based
How is concurrency handled?
How are resource conflicts managed?

Programming languages
C/C++
Java/C#
Memory management
Atomicity in the presence of interrupts

CSE 466 - Winter 2007 Wireless Sensor Networks 2

Embedded Operating Systems

Features of all operating systems
Abstraction of system resources
Managing of system resources
Concurrency model
Launch applications

Desktop operating systems
General-purpose – all features may be needed
Large-scale resources – memory, disk, file systems

Embedded operating systems
Application-specific – just use features you need, save memory
Small-scale resources – sensors, communication ports

2

CSE 466 - Winter 2007 Wireless Sensor Networks 3

System Resources on Typical Sensor Nodes

Timers
Sensors
Serial port
Radio communications
Memory
Power management

CSE 466 - Winter 2007 Wireless Sensor Networks 4

Abstraction of System Resources

Create virtual components
E.g., multiple timers from one timer

Allow them to be shared by multiple threads of execution
E.g., two applications that want to share radio communication

Device drivers provide interface for resource
Encapsulate frequently used functions
Save device state (if any)
Manage interrupt handling

3

CSE 466 - Winter 2007 Wireless Sensor Networks 5

Very simple device driver

Turn LED on/off
Parameters:

port pin

API:
on(port_pin) - specifies the port pin (e.g., port D pin 3)
off(port_pin)

Interactions:
only if other devices want to use the same port

CSE 466 - Winter 2007 Wireless Sensor Networks 6

Simple device driver

Turning an LED on and off at a fixed rate
Parameters:

port pin
rate at which to blink LED

API:
on(port_pin, rate)

specifies the port pin (e.g., port D pin 3)
specifies the rate to use in setting up the timer (what scale?)

off(port_pin)
Internal state and functions:

keep track of state (on or off for a particular pin) of each pin
interrupt service routine to handle timer interrupt

4

CSE 466 - Winter 2007 Wireless Sensor Networks 7

Interesting interactions

What if other devices also need to use timer
(e.g., PWM device)?

timer interrupts now need to be handled differently depending on
which device’s alarm is going off

Benefits of special-purpose output compare peripheral
output compare pins used exclusively for one device
output compare has a separate interrupt handling routine

What if we don’t have output compare capability or run
out of output compare units?

CSE 466 - Winter 2007 Wireless Sensor Networks 8

Sharing timers

Create a new device driver for the timer unit
Allow other devices to ask for timer services
Manage timer independently so that it can service multiple requests

Parameters:
Time to wait, address to call when timer reaches that value

API:
set_timer(time_to_wait, call_back_address)

Set call_back_address to correspond to time+time_to_wait
Compute next alarm to sound and set timer
Update in interrupt service routine for next alarm

Internal state and functions:
How many alarms can the driver keep track of?
How are they organized? FIFO? priority queue?

5

CSE 466 - Winter 2007 Wireless Sensor Networks 9

Concurrency

Multiple programs interleaved as if parallel
Each program requests access to devices/services

e.g., timers, serial ports, etc.

Exclusive or concurrent access to devices
allow only one program at a time to access a device (e.g., serial port)
arbitrate multiple accesses (e.g., timer)

State and arbitration needed
keep track of state of devices and concurrent programs using resource
arbitrate their accesses (order, fairness, exclusivity)
monitors/locks (supported by primitive operations in ISA - test-and-set)

Interrupts
disabling may effect timing of programs
keeping enabled may cause unwanted interactions

CSE 466 - Winter 2007 Wireless Sensor Networks 10

Handling concurrency

Traditional operating system
multiple threads or processes
file system
virtual memory and paging
input/output (buffering between CPU, memory, and I/O devices)
interrupt handling (mostly with I/O devices)
resource allocation and arbitration
command interface (execution of programs)

Embedded operating system
lightweight threads
input/output
interrupt handling
real-time guarantees

6

CSE 466 - Winter 2007 Wireless Sensor Networks 11

Embedded operating systems

Lightweight threads
basic locks
fast context-switches

Input/output
API for talking to devices
buffering

Interrupt handling (with I/O devices and UI)
translate interrupts into events to be handled by user code
trigger new tasks to run (reactive)

Real-time issues
guarantee task is called at a certain rate
guarantee an interrupt will be handled within a certain time
priority or deadline driven scheduling of tasks

CSE 466 - Winter 2007 Wireless Sensor Networks 12

embedded operating
systems typically
reside in ROM (flash)
- changed rarely

Some Examples

Pocket PC/WindowsCE/WindowsMobile
PDA operating system
spin-off of Windows NT
portable to a wide variety of processors (e.g., Xscale)
full-featured OS modularized to only include features as needed

Wind River Systems VxWorks
one of the most popular embedded OS kernels
highly portable to an even wider variety of processors (tiny to huge)
modularized even further than the ones above (basic system under 50K)

TinyOS
Open-source development environment specificall for small sensors
Simple (and tiny) operating system

Scheduler/event model of concurrency
Software components for efficient modularity
Software encapsulation for resources of sensor networks

Programming language and model – nesC

7

CSE 466 - Winter 2007 Wireless Sensor Networks 13

Embedded Linux

iMote2 supports Linux, TinyOS, and SOS
Linux is the Familiar release originally developed for iPAQs
(actually the DEC Itsy PDA by DEC Western Research Lab
and then by Compaq’s Cambridge lab)

Linux kernel provides many utilities
Timer abstractions
File system
Serial communication
IP network communication
Memory management

We can extend the kernel by registering new modules
These can control the internal registers of the XScale
microcontroller

CSE 466 - Winter 2007 Wireless Sensor Networks 14

A Simple Application

Blinking an LED at 1Hz – Lab 1 revisited
Module to control LED GPIO pin

Sets state of LED
Uses timer
API allows setting of blink rate

Register module in kernel
Assigned a “device number” by the Linux OS

User-level application calls module API to start/stop/set

8

CSE 466 - Winter 2007 Wireless Sensor Networks 15

Kernel module
#include <linux/module.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <asm/hardware.h>
#include <asm-arm/arch-pxa/pxa-regs.h> // This include file lets us access memory-mapped I/O registers
#include "blink.h"

#define OIER_E4 (1<<4)
#define RED (1 << 7)

dev_t devId; // Contains the major and minor device numbers
struct cdev *cdev; // A kernel character device struct
int blink_ioctl(struct inode *, struct file *, unsigned int, unsigned long);
static void __exit unload_function(void);
struct file_operations blink_fops = {.owner = THIS_MODULE, .ioctl = blink_ioctl};

int state = 0; // State of the LED (on or off)
int delay = 16384; // Period is 1/16384 seconds * delay

int blink_ioctl(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg) {
switch (cmd) {

case BLINK_SET_RATE:
OSMR4 = arg; // Update the match register
OSCR4 = 0; // Reset the counter
break;

default:
return -ENOTTY;

}
return 0;

}

CSE 466 - Winter 2007 Wireless Sensor Networks 16

Kernel module (cont’d)
irqreturn_t blink_irq_handler(int irq, void *dev_id, struct pt_regs *regs) // called by kernel
{ // Check to see if this interrupt is for us

if (!(OSSR & OIER_E4))
return IRQ_RETVAL(IRQ_NONE);

OSSR |= OIER_E4; // Acknowledge this interrupt
state = !state;
if (state)

GPSR3 = RED;
else

GPCR3 = RED;
return IRQ_RETVAL(IRQ_HANDLED);

}
static int __init init_function(void) // discardable by kernel
{

int result;
// Allocate a major device number for this driver
result = alloc_chrdev_region(&devId, 0, 1, "blink");
if (result < 0) return result;
// Allocate a character devicw and set the owner and file operations of this new character device
cdev = cdev_alloc();
cdev->owner = THIS_MODULE;
cdev->ops = &blink_fops;
// Register the character device
// Note at this point the device is live!
result = cdev_add(cdev, devId, 1);
result = request_irq(IRQ_OST_4_11, blink_irq_handler, 0, "blink", cdev);
if (result < 0) {

unload_function();
return result;

}
// At this point, everything should succeed, so initialize the hardware
OMCR4 = 0xC9; // Match against channel 4, periodic timer, reset on match,

// period is 1 microsecond.
OSMR4 = delay;
OIER |= OIER_E4; // Enable interrupts for channel 4
OSCR4 = 0; // Start the counter
return 0; // SUCCESS

}

9

CSE 466 - Winter 2007 Wireless Sensor Networks 17

Kernel module (cont’d)

static void __exit unload_function(void)
{

// Turn off interrupts
OIER &= ~OIER_E4;
free_irq(IRQ_OST_4_11, cdev);

// Free the character device
cdev_del(cdev);
// Unregister the major device number
unregister_chrdev_region(devId, 1);

}

// These two macros let the compiler and kernel know which functions
// should be called when loading and unloading the kernel.

module_init(init_function);
module_exit(unload_function);

CSE 466 - Winter 2007 Wireless Sensor Networks 18

Application
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include "blink.h"

int main(int argc, char *argv)
{

int rate, fd;

if (argc != 2) {
printf("Usage: %s <Hz>\n", argv[0]);
return 0;

}

rate = (int)(16384 / atof(argv[1]));

fd = open("/dev/blink", O_WRONLY);
if (fd < 0) {

printf("Unable to open /dev/blink\n");
return 0;

}

ioctl(fd, BLINK_SET_RATE, rate);
close(fd);

}

10

CSE 466 - Winter 2007 Wireless Sensor Networks 19

Labs 5/6

Redo Lab 2 (blink instead of count)
Modify module to do color of LED instead of rate of blink

Use timer to generate PWM signals instead of just on/off
Use the single timer to do R, G, and B
(other timers used by other modules – Linux does not provide
general timer utilities at that fine resolution)

Redo Lab 3
Accelerometer module (mostly already there)
You’ll write a GPIO interrupt handler to decode accel signals
Change color of LED accordingly (very similar code)

Use 3rd dimension of accel to do V instead of pot

CSE 466 - Winter 2007 Wireless Sensor Networks 20

Labs 5/6 (cont’d)

Implement accel decoder and LED driver on two
separate iMote2s

Radio communication between them
Send RGB or HSV values from one node to the other
Use 802.15.4 radio packets (format and API provided)

Define your own payload

