Putting it all together

- Creating a wireless controller for a multi-player game
- Lab 8: World Cup Soccer
- Two week project to tie together everything you've learned in 466
- Each of you will prepare a wireless sensor node to be a player
- You will operate your own player
- All will have different code but conform to a player interface
- You will be graded on how well you meet the interface specification
- All of you will play a game together on March 14
- Lab 7: "Airstick"
- Determine Δx and Δy for each player
- Wireless communication to game master and between players on same team

In the past, there was the flock

- Each node ("bird") sings a song
- It listens to its neighbors to hear what they sang

- It makes a decision as to which song to sing next
- This can lead to an emergent behavior - property of the group
- We'll be trying for an effect that propagates a song around the flock
- If it is startled (by a shadow cast on its light sensor), then it makes a "scared" noise and informs its neighbors who will do the same
- If it is "selected" (by a repeating shadow on its light sensor), then it send a packet to the controller
- It synchronizes with neighbors by adjusting to time values in every packet it receives
- It responds to commands from controller
- Adjust parameters
- Turn on LED
- Sing a specific song at a specific time

This is $2^{\text {nd }}$ annual wireless soccer world cup

- Official playing field

Our playing field - no ball

Basic play: moves

- Use airstick to generate $\Delta x, \Delta y$ for each move

Basic play: coordination of teammates

- Players merge if they get close (within some small \# of units)
- Merged player move faster
- Can keep merging into larger and larger players

Basic play: interaction of opposing players

- Opposing players split apart if they get close
- Split produces all singleton players
- Singletons appear to jump to random locations

Basic play: scoring

- Go through goal - score proportional to size of player

Some basic parameters

- Field size: 480 by 640 units
- Player movement: up to 20 units/second
- One end of the field to the other in ~ 30 seconds
- Player diameter:
- 10 units for singleton
- $\operatorname{sqrt}\left(100^{*} \mathrm{n}\right)$ for merged player

- Player proximity:
- Teammates must touch/overlap to merge
- Opposing players must touch to split (appear at least 50 units away from point of contact)
- Goal size: 48 units (1/10 of field width)

CSE 466 - Winter $2008 \quad$ Project Design

Basic software for each player

- Poll airstick - at least a few times per second
- Determine direction and speed from position of finger
- Up to ± 20 in x-direction and ± 20 in y-direction
- Make sure to handle stationary player well
- Respond to messages from game master
- Send move $\Delta x, \Delta y$ to game controller if singleton player or mergedplayer captain (if part of a merged player)
- Update display and/or play sound
- Display shows
- Player number
- Number of captain of merged-player (if merged in)
- Game score
- Position of player on field
- Sounds for different actions
- movement, hitting out-of-bounds line, scoring, merging, and splitting

Basic loop for game master

- Polls each player in turn - round-robin - as fast as it can
- Singleton players first, merged-players last
- As players receive messages they reply as quickly as possible to game master or merged-player captain (controller can overhear)
- If player doesn't respond within a specified amount of time, master moves on to next player - that player doesn't move for that round
- Master updates screen after one full cycle through players
- Expected refresh rate is 4-6 frames per second
- ~ 500 bits/packet, 20 players, 2 packets/player $=20 \mathrm{~Kb} / \mathrm{sec}$
- Split on to two channels (two receivers at game master)
- About 10\% of 802.15.4 bandwidth

Packet from game master

- Source address identifying packet as coming from master
- Controller is player 0 on team 0
- Destination address
- 2 bytes, team (1 or 2) and player number (player number unique)
- Merged or not merged
- 0 if not merged, \# of captain if merged
- For captain, number of players merged into composite player
- Current score
- Action: scored, merged, unmerged, teleported, hit out-of-bounds line
- Position of player on field
- Reset
- Toggle player on/off

Packet to game master (or captain)

- Source address (team, \# of player)
- Destination address
- To game master (0,0)
- To merged-player captain (same team number, captain's \#)
- $\Delta x, \Delta y$
- Merge enable - value of switch on jog-dial
- If button is pressed, player doesn't merge and gets unmerged (popped to random location) if already merged
- Must be sent as quickly as possible after reception of packet from game master

Inter-player coordination

- Merged-player captain collects moves from member players and aggregates before sending to master
- Sum move values and divide by sqrt of merged player size (same as averaging and multiplying by sqrt of size)
- Merged $\Delta x=\Sigma\left(\Delta x_{i}\right) /$ sqrt(size)
- Merged $\Delta y=\Sigma\left(\Delta y_{i}\right) /$ sqrt(size)
- 4-player can move up to $\Sigma(20) /$ sqrt(4) $=40$ units/sec
- Member players send their offsets to captain rather than game master
- Captain sends aggregate move to game master when it is polled (at end of round-robin poll)

Missed packets

- Loss of master packet
- Player is not polled on a round
- Game/player state in every master packet - regain correct state
- Loss of player packet
- Player loses turn - merged player less effective
- Player state (button, direction/velocity) in every player packet

Special game elements

- Worm holes
- Lines on field that, if crossed, by a player teleport the player to a corresponding line on the other side of the field
- Gravity wells
- Points in the field that slow players down or maybe just those of the opposing team
- Player types
- Goalies, defensive and offensive players given enhanced roles when in the right part of the field
- Restrict movement - e.g., goalie stays within box
- Give special powers - e.g., goalie counts as two when hitting a composite player
- Add ball back in?

The Match - Mar 14 - 12:30PM - Atrium

- Final demo for the class is a single multi-player game
- Each student has a mote to contribute (20 motes)
- Same specification but different code in each mote
- The motes have to "qualify" - We will have testing scripts to simulate the game and eliminate nodes that may cause problems
- Used for grading projects

