Combinational Logic

Switches -> Boolean algebra
Representation of Boolean functions
Logic circuit elements - logic gates
Regular logic structures

Timing behavior of combinational logic
HDLs and combinational logic
Incompletely specified functions
Optimization of combinational logic
Arithmetic circuits
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Switching Algebra

Based on operation of switches

X switch conducts if ON

—‘__L|— switch does not conduct if OFF

Values are either 0 or 1 - switch is on or of f
(A1) X#1=>X=0 X#0=>X=1

Complementation - operation which reverses switch state
(A2) X=1= X'=0 X=0=X'=1
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Switching Algebra (cont'd)

Switch composition

is series composition

+ is parallel composition

(A3) 0-0=0
(A4) 1-1=1
(AB) 1:0=0-1=0

Review of Combinational Logic

Representing Boolean Values

Use voltage
2.5v
1
Undefined
0
Ov
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Only Switches We Need

How do we make an inverter?
input 2.5v = output Ov
input Ov = output 2.5v

Conducts when control is Ov

Conducts when control is 5v
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Before we Abstract Voltage away Entirely...

What happens when input isn't 2.5v or Ov?
OK for input to be 2.5v - &
OK for input to be Ov + ¢ Vout

IN —| >o— OUT

2.5v

Oov 2.5y Vin
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Representing of Boolean Functions

Boolean expression: a'b+ab' +a'c
truth table: ¢ ‘ ab  ab'  a'c | ab+ab+a'c

0 0 O 0 [ 1 1

0o o 1 ] o ] [}

o 1 0 1 o 1 1

] 1 1 1 ] ] 1

i 0 0 ] 1 ] 1

1 0 1 ] 1 ] 1

1 1 0 ] o ] o
n-dimensional cibe: 1 1 o 0 o 0

111
v T
b
circuit with logic gates
000
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Canonical forms: Sum Of Products

Truth table is the unique signature of a Boolean function
Many alternative expressions may have the same truth table
Canonical form

standard form for a Boolean expression

Sum-of-products form -
a.k.a. disjunctive normal form or minterm expansion

011 100 101 110 111
F = ABC + AB'C' + AB'C + ABC' + ABC

A
0
0
0
0
1
1
1
1

F'= ABC + ABC + ABC
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Canonical Forms: SOP (cont'd)

Product term (or minterm)
ANDed product of literals in which each variable appears exactly
once, in true or complemented form (but not both)

A B C minterms F in canonical form:
000 TABC mD F(A, B, C) =Im(3,4,56,7)
P BN =m3 +m4 +m5 + m6 + m7
0 1 1 |ABC m3 = A'BC + AB'C' + AB'C + ABC' + ABC
1 0 0 |ABC m4
} g 11] ﬁgg ms canonical form # minimal form
1 1 1 |ABC m7 F(A, B,C) = AB'(C + C') + ABC + AB(C' + C)
= AB' + A'BC + AB
\ = A(B' + B) + ABC
. =A+ABC
P “h v
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Product-of-sums canonical form

Also known as conjunctive normal form
Also known as maxterm expansion

F= 000 010 100
F=(A+B+C)(A+B +C) (A +B+C)

A
0
0
0
0
1
1
1
1

R OOK RO Oom
—HOoRORORON

F=(A+B+C)(A+B' +C)(A"+B+C)(A+B'+C)(A'+B' +C)
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Canonical Forms: POS

Product-of-sums form - a.k.a. conjunctive normal form or maxterm
expansion
Sum term (or maxterm)
ORed sum of literals in which each variable appears exactly once, in
true or complemented form (but not both)

A B C F in canonical form:
0 0 0 F(A, B, C) =1IM(0,1,2)
0 0 1 [A+B+C M1 — MO s ML o M2
0 1 0 [A+B+C M2 , ,
0 1 1 |A+B+C M3 =(A+B+C)(A+B+C)(A+B' +C)
1 0 0 |A+B+C M4
10 1 |A+B+C M5 . -
canonical form # minimal form
1 1 0 |A+B+C M6
L1 1 |Amic w F(A/B,C) = (A+B+(CeC))(A+(BeB)+C)
=(A+B)(A+C)
=A+BC

short-hand notation for
maxterms of 3 variables
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Incompletely specified functions

Example: binary coded decimal increment by 1
BCD digits encode the decimal digits O - 9 in the bit patterns 0000

- 1001
A B C D X Y Z
0 0 0 O (o 0 0 1
0 0 0 1100 off-set of W
0 0 1 0 ([0 O
0 0 1 11jo 1 -
o 1 o0 o llo 1 on-set of W
8 % (1) (1) g i don't care (DC) set of W
0 1 1 1 |[f 0
1 0 0 0 |[1 0
1 0 0 1 (00 O
} 3 } (1) § X X ))2 these inputs patterns should
1 1 0 0 X X never be encountered in practice
i1 0 1 [XX X X — we "don't care” about associated
1 1 1 0 X X X output values, and this can be
1 1 1 1 (X X X X exploited in minimization
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Notation for incompletely specified functions

Don't cares and canonical forms
so far, only represented on-set
must also represent don't-care-set
need two of the three sets (on-set, of f-set, dc-set)

Canonical representations of the BCD increment by 1 function:

Z =m0 +m2 +m4+mb +m8 +dl0 + dll + d12 + d13 + d14 + d15
Z=x[m(0,24,6,8)+d(10,11,12,13,14,15) ]

Z=MI1-M3+M5-M7-M9-DI0- DI1-DI2- D13 - D14 - D15
Z=TI[ M(1,357,9) - D(10,11,12,13,14,15) ]
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Regular Two-Level Logic

Basis is canonical form
Note notation for high-fanin gates

A B C
i

+«——— minterms

Uy

N

Review of Combinational Logic 14

OR plane

vome /T

w X Y z

Complete Minterm Array

Provide all minterms (2N) address customized
(programmed)

Connect OR gates to compute function

This is a memory-like device e /

a.k.a. look up table

full Decoder _—"
(fixed)

MRy

X z
Review of Combinational Logic 15

Memory Example

Example: combinational logic implementation (two-level canonical form)
FO=A'B'C + ABC + AB'C
FL=A'B'C + ABC + ABC
F2=A'BC + ABC + ABC
Truth Table F3=A'BC + AB'C +ABC Block Diagram

Address Data
B C

ROM
(8 words x 4 bits)

T

A B C FOF1F2F3
address  outputs

A
0
0
0
0
1
1
1
1
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Programmable Logic Array

Observation - don't need all the minterms
Result - supply enough for the "average" case

“a ROM that cheats” - T. Kehl s 0
Program the ANDs for minterms

Program the ORs for outputs

More expensive than ROM

Slower than ROM
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PLAs: another design example

AYeP
Magnitude comparator
A AB'CD'
o L ABCD
1101 1]y ABCD
cllaf1]ols AB'CD'
L [Tt o N AC'
B
A'C
K-map for NE L BD
A A BD'
olololo o [l 1] ABD
B'CD
tfojolo]y olofslslfy
cli[1]o | clofofo]o ABC
RRAD o [o]m]o BCD'
B B Rj
K-map for LT K-map for GT
Review of Combinational Logic EQ NE LT GT 18




PALs

Programmable array logic (PAL) Fixed OR plane
constrained topology of the OR array
innovation by Monolithic Memories l
faster and smaller OR plane
"PLA per pin"

I

DU

a given column of the OR array
has access to only a subset of
the possible product terms

Programmed

VY
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PALs: Design example (cont'd)

Typical PLD: 22V10

>

.M,
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ABCD
Ll
Code converter: programmed PAL A
BD
C BC
0
BC'
[ 0
4 product terms 0
per each OR gate 0
B
C
0
- 0
— A'B'CD
BCD
AD'
YAVVV A
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PLD Output
—1 o
JE—— T
|
| | sa—rre ]
H I ©
S ‘
J| o —
From Ciock puter — |
| - s
WO
| 1
a
=]
|
| s
| 3
|| 40 oo et
55 = synchronous et
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PALs

Typical PAL/PLD: 22V10
22 pins, 10 outputs (can be used as inputs/feedback)
Output pins have a register which can be bypassed
Register output feeds back to inputs
Different # of product terms/pin
Some 8, some 16
Common problems - too few product terms
Especially for arithmetic-like functions
Solutions
Change output polarity
the complement of a function may use fewer product terms
Implement using multi-level logic (more later)
factor into multiple functions (e.g. Shannon expansion)
Pre-encode inputs - e.g. (A+B),(A+B),(A+B')(A+B")
Re-encode outputs - generate more outputs that can be combined
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Multiplexers/selectors

Multiplexers/selectors: general concept
2n data inputs, n control inputs (called "selects"), 1 output
used to connect one of 2" inputs to the single output
control signal pattern forms binary index of input connected fo output

e.g. 2-1 mux
s |z z
0|1 0
Z=S1 +S1, o o
1L
1
0
0
functional form 1
logical form 1
1

two alternative forms
for a 2:1 Mux truth table
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Multiplexers/selectors (cont'd)

10—
11—
10— 12—
13— .
| 44 8:1
R—| mux |2 Bl mux [ 7
13— 15—
16—
[l v
190 l ‘L]‘
25150
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Cascading multiplexers

Large multiplexers can be implemented by cascading smaller ones using
a tree structure

Gate level implementation of muxes

o i
= O

o BN

Review of Combinational Logic 27

2:1 mux

4:1 mux

Multiplexer Logic (cont’d)

What function does this compute?
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alternative
implementation
0_L—p 8:1
10 —p L mux mux
1 8:1 -
n—p 41 mux BT % T
13 —p_mux —L_mpx 4:1 7
» — 21 [T “_|, mux [T
—b
15— J X B4 mix !
I6—p %1 16
7 —p_mu 7 o
S S
291 0 Sz S;So
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Multiplexer Logic
A B C
LoD
0
n
2
13
"
15
16
7 :7
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Multiplexer Logic (cont’d)
Multiplexors as a general-purpose logic block
a 2m1 multiplexor can implement any function of n variables by
connecting the inputs to 0/1 (a lookup table
a 211 multiplexor can implement any function of n variables by
connecting inputs to one variable or its complement
etc.
Example: F(A,B,C,D) can be implemented by an 8:1 MUX
1 —o
— A —!
0 —2
CIGIEID o ¢
choose A,B,C as control P —4 81 MUX [
\_1‘ Lo/ |19 M D variables B s
— T o s
11| |fof||1 !
C multiplexer implementation D
s2 St 80|
e e T
c A B C
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decoders

General idea:
Convert a binary number into a 1-hot number
n inputs (address)

Gate level implementation of demultiplexers

1:2 decoder

2:4 decoder

S1 S0
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2n outputs 11] —'::g:g
—
enable input (optional) Enable 2 |— ABC
0 -> all outputs 0 G —» 38 DEc«au — :‘58
—
can be used as data input 5 |—» ABC
demultiplexer S e :gg
s 5180 |
‘A ‘ B 'C
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Cascading decoders
Use a tree structure
cheaper than 2-level implementation
5:32 decoder 0|— ABCDE ol—
1x2:4 decoder % e 3 aecoE
. . — .8 DEC3|—
4x3:8 decoders 3:8 DECS —{ 3:8DEC3 [}
5 50—
61— 61—
5 shl™ sdl—
F —> 2:4 DEC 1
si1s0 3
| — 0— ABCDE
A B [—> 1—
e 2—
8 DECS [ —{3:8 DEC3[ >
— 5—
— 6 —
| ABcoE of|— ABCDE
cbE cbE
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Two-Level Logic Minimization

Useful for regular two-level implementation methods, e.g. PLA, PAL
Exact procedure is straightforward

Good CAD tools
OK for “small” functions - ~10 input variables

In general, for large functions

Algorithm is too slow (exponential in number of inputs)

Even if you could find the minimal circuit, it has exponential size
What to do?
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Two-Level Simplification

Map of cube with wrap-around (hard to draw for more than 4 dimensions)
Karnaugh map: an alternative to truth-tables to help visualize adjacencies
Computer-based methods are necessary for practical applications
Numbering scheme based on Gray-code - e.g., 00, 01, 11, 10

only a single bit changes in code for adjacent map cells

A

AB [

A CcD 00 01 11 10

AB [
B0 1 S\ 00 01 11 10 0o |a |12]8
0 o
0 2 o 2 6 4 01 1 5 13| 9
D
1013 lafs|7]s 11 3 | 7 | 15| 11
c
B 1012 |6 |14] 10
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Two-Level Simplification (cont'd)

A
F= B\ 0 1
\0 1|1

Cout =
Tlo |o

f(AB,C)=£m(0,4,6,7)

obtain complement of function
by covering Os with subcubes
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Design example: 2x2-bit multiplier

A2 A1 B2B1|P8 P4 P2 P1
00O0O (O O O O
0110 0 0 O
100 0 0 O
1 1]0 0 0 0
Al— — P1 01 8 ? 8 8 8 (1)
A2 s 1000 0 1 0
o I U
B2 P8 010 0 1 0
100 1 0 0
110 1 1 0
block diagram 011/0 0 1 1
and 100 1 1 0
truth table 111 0 0 1
4-variable K-map
for each of the 4
output functions
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Design example: 2x2-bit multiplier (cont’'d)

Definitions for Two-Level Simplification

Implicant - single element of the ON-set or DC-set or any group of
these elements that can be combined to form a subcube
Prime implicant - implicant that cannot be combined with another to
form a larger subcube
Essential prime implicant - a prime implicant is essential if it is the only
one to cover an element of the ON-set (will participate in ALL possible
covers of the ON-set)
Note: don't cares are used to form prime implicants but cannot
make the prime implicant essential
Objective:
grow implicant into prime implicants (minimize literals per term)
cover the ON-set with as few prime implicants as possible
(minimize number of product terms)
essential primes participate in all possible covers
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Algorithm for Two-Level Minimization

Algorithm: minimum sum of products expression from a K-map
step 1: choose an element of the ON-set
step 2: find "maximal" groupings of 1s and Xs adjacent to that
element
remember to consider top/bottom row, left/right column, and
corner
adjacencies, this forms prime implicants (number of elements
always a power of 2)
repeat steps 1 and 2 to find all prime implicants
step 3: revisit the 1's in the K-map
if covered by single prime implicant, it is essential, and
participates in final cover, the 1s it covers do not need to be
revisited
step 4: if there remain 1s not covered by essential prime implicants,
then select the smallest number of prime implicants that cover the
remaining 1s
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A2 A2
ol o o] o |KmapforP8 K-map for P4[" T~ "T" T
P4 = A2B2B1"
ejojoge B1 + A2A1'B2: N B1
. oo - 0 \O ~o,,m
P8 = A2A1B2B1
ofofo]o ol ot
T 1
A2 A2
ol o o] o |KmapforP2 Kemap forP1 o[ o | o | o
P1 =A1B1
o]0 E.ﬁ B1 | I | B P
off1]] o oflul1J]o
B2 m‘\ = A2'A1B2 B2
0 16N+ A1B2B1' olofolo
T + A2B2'B1 T
+ A2A1'B1
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Examples to lllustrate Terms
AB A 6 prime implicants:
cD\_00 01 11 10 / A'BD, BC,, AC, ACD, AB, B'CD
00| o [|x [[1]| o
01 T . ‘ B R essential
5 D minimum cover: BC'+AC+ABD
o| “lll o I+ 6T
10
0o flulls AB A
—s D\ _00 01 11 10
0| 0|0 m 0
5 prime implicants:
BD, ABC', ACD, A'BC, ACD ot E ° iy
o ]G]
- c
essential 10 u
minimum cover: essential implicants 0 1 0 0
B
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Multiple-Output Functions
Additional optimization: share terms between functions
eg.

f,(a,b,c,d) = £m(2,4,10,11,12,13)

f)(a,b,c,d) = £m(4,5,10,11,13)

fy(a,b,c,d) = £m(1,2,3,10,11,12)

A A A
of1|1]0 of1]o0]o0 ofo|1]o0
ofof1]o0 of1|1]o0 1lofofo

D D D
o|ofo]1 o|ofo]1 1{ofo]1
C C C
1{ofo]1 o|o|o]1 1{ofo]1
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Multiple-Output Function Minimization

Intersect functions to find all shared terms

f, A f, A f; A
o[ 1]1] o ol 1]o]o ofof1]o
oo 1]o ol 1]1]o tlo oo
) ) )
oflofol1 o ofo]1 1o o1
c c c
1lolof1 o oot 1o [0t
fi, A fi3 A f2s A fix A
ol 1[0 o ol of[1]o0 ofofolo ofofo]o
olol1]o ol oo o oo oo NERERIE
D D D
oflofol1 ol ofol1 ERERE oo o1
c c c c
ofofo|1 1] ofof1 oo o]t oo o1
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Multiple-Output Function Minimization

Multiple-Output Prime Implicant
Implies one or more functions
(intersection of function implicants)
Not covered by any other implicant of the same function(s)
eg.
Minimal cover comprises only MOPT's
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Multiple-Output Function Minimization

Multiple-output functions

Consider prime implicants for all outputs and whether they
can be shared

Consider conjunction of outputs (all combinations)

f,(a,b,c,d) = ¥m(2,4,10,11,12,13) riginal three functions
fy(ab,C.d) = Im(4,5,10,11,13) 7

fy(a,b,c,d) = £m(1,2,3,10,11,12)

fi,(a,b,c,d) = £m(4,10,11,13)

fi5(a,b,c,d) = £m(2,10,11,12) terms that can be shared
f,5(a,b,c,d) = m(10,11) between pairs of function
fis(@bed) =Im(1011),

terms that can be shared
between all three

M.O.P.I's

Enumerate all the MOPIs

¥ m(2,3,10,11)

¥ m(4,12)

$ m(12,13)

¥ m(4,5)
m(5,13)

- SWQuhToaonooco
T T T T

I
™M
3
Z e

%Edzf% ﬁ%l MOPTs

Determine a’minimal cover
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Finding a Cover
f,g,h,j are essential:
4 1p 1 1p 13|14 5 1p iff 13 p 1 1p
a 3
b 1 X
c 1 X
d 2 X X
e 2 X X
—3
123
i1 X X
—3
k 12 X X

(b+i)(c+k)(d+i)(d+e)(e+k) =1  every column must be covered

cei+bcde+eik+dik+bdk = 1 multiply out fy = c+g+h+i

bede is clearly out of consideration — it requires one more product term |2 = €+h+
any one of cei, eik, dik, or bdk will do for minimum number of product |3 = f+9+h+j

terms or for minimum number of literals (they are all equal cost)
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Problems with 2-Level Optimization

Number of prime implicants grows rapidly with the number of inputs
upper bound: 3**n / n, where n is the number of inputs
Finding a minimum cover is NP-complete, i.e., a computational
expensive process not likely to yield to any efficient algorithm
Solution: use heuristics, trade minimality of answer for speed
Espresso: don't generate all prime implicants
Jjudiciously select a subset of primes that still covers ON-set
operate as a human would in finding primes in a K-map
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