More Verilog

Registers

Counters

Shift registers
FSMs
Delayed assignments
Test Fixtures

Verilog - 1

8-bit Register with Synchronous Reset

module reg8 (reset, CLK, D, Q);
input reset;

input CLK;

input [7:0] D;

output [7:0] Q;

reg [7:0]1 Q;

always @ (posedge CLK)
if (reset)

Q=0;
else
Q =D;
endmodule // reg8

Verilog - 2

N-bit Register with Asynchronous Reset

module regN (reset, CLK, D, Q);

input reset;
input CLK;
parameter N = 8; // Allow N to be changed

input [N-1:0] D;
output [N-1:0] Q;
reg [N-1:0] Q;

always @ (g dge CLK or p d reset)
if (reset)
Q= 0;
else if (CLK == 1)
Q = D;
endmodule // regN
Verilog - 3

Shift Register Example

// 8-bit register can be cleared, loaded, shifted left
// Retains value if no control signal is asserted

module shiftReg (CLK, clr, shift, 1d, Din, SI, Dout);
input CLK;

input clr; // clear register

input shift; // shift

input 1d; // load register from Din
input [7:0] Din; // Data input for load
input sI; // Input bit to shift in
output [7:0] Dout;

reg [7:0] Dout;

always @ (posedge CLK) begin

if (clr) Dout <= 0;
else if (1d) Dout <= Din;
else if (shift) Dout <= { Dout[6:0], SI };
end
endmodule // shiftReg
Verilog - 4

Blocking and Non-Blocking Assignments

Blocking assignments (Q = a)
variable is assigned immediately before continuing to next statement
new variable value is used by subsequent statements
Non-blocking assignments (Q <= a)
variable is assigned only after all statements already scheduled
are executed
value to be assigned is computed here but saved for later
usual use: register assignment
registers simultaneously take their new values
after the clock tick

Example: swap

always @ (posedge CLK)

always @ (posedge CLK)
begin

begin

temp = B; A <=3
B =4 B <= A;
A = temp;

end
end

Verilog - 5

Swap (continued)

The real problem is parallel blocks
one of the blocks is executed first
previous value of variable is lost
always @(posedge CLK) always @ (posedge CLK)
egin begin
A=5; B =3
end end

Use delayed assignment to fix this
both blocks are scheduled by posedge cLk

always @(posedge CLK) always @ (posedge CLK)
egin begin
A <= B; B <= A;
end end

Verilog - 6

Non-Blocking Assignment

Non-blocking assignment is also known as an RTL assignment

if used in an always block triggered by a clock edge

mimic register-transfer-level semantics - all flip-flops change together
My rule: ALWAYS use <= in sequential (posedge clk) blocks

// this implements 3 parallel flip-flops
always @ (posedge clk)
begin

// this implements a shift register
always @ (posedge clk)
begin
D, ¢, B} = (C, B, A};
end

// this implements a shift register
always @ (posedge clk)
begin
B <= 3;
Bj
D <=¢;

Verilog - 7

Counter Example

Simple components with a register and extra computation
Customized interface and behavior, e.g.
counters
shift registers

// 8-bit counter with clear and count enable controls
module count8 (CLK, clr, cntEn, Dout);

input CLK;
input clr; // clear counter
input cntEn; // enable count
output [7:0] Dout; // counter value
reg [7:0] Dout;

always Q@ (posedge CLK)
if (clr) Dout <= 0;
else if (cntEn) Dout <= Dout + 1;
endmodule

Verilog - 8

Finite State Machines

Recall FSM model

Mealy outputs

next state

i \
w \

Moore outputs
inputs

current state

Recommended FSM implementation style
Implement combinational logic using a one always block
Implement an explicit state register using a second always block

Verilog - 9

Verilog FSM - Reduce 1s example

Change the first 1 1o O in each string of 1's
Example Moore machine implemenation
1 o
// State assignment
parameter zero = 0, onel = 1, twols = 2;
module reduce (clk, reset, in, out); 0 1

input clk, reset, in; 3
output out;
reg out;
reg [1:0] state; // state register
reg [1:0] next_state;
// Implement the state register
always @ (posedge clk)
if (reset) state = zero;
else state = next_state;

Verilog - 10

Moore Verilog FSM (cont'd)

always @(in or state)

_ . .
case (state) cruc.|al to include
out = 0; // defaults all signals that are
next_s;at% = zem/? / last input input to state and
zero: begin ast input was a zero :
if (in) next_state = onel; output equatmns
end
onel: begin // we've seen one 1
if (in) next_state = twols;
end
twols: begin // we've seen at least 2 ones
out = 1;

if (in) next_state = twols;

n

// Don’t need case default because of default assignments
endcase
endmodule

Verilog - 11

Mealy Verilog FSM for Reduce-1s example

module reduce (clk, reset, in, out);
input clk, reset, in;
output out; 0/0
reg out;
reg state; // state register
reg next_state;
parameter zero = 0, one = 1;

0/0 1/0
always @(posedge clk)
if (reset) state = zero;
else state = next_state; ‘ 1/1

always @(in or state)
out = 0;

next_state = zero;

case (state)

zero: begin // last input was a zero
if (in) next_state = one;

end

one: // we've seen one 1
if (in) begin

next_state = one; out = 1;

end

endcase

endmodule

Verilog - 12

Restricted FSM Implementation Style

Mealy machine requires two always blocks
register needs posedge CLK block
input to output needs combinational block
Moore machine can be done with one always block
e.g. simple counter
Not a good idea for general FSMs
Can be very confusing (see example)

Moore outputs
Share with state register, use suitable state encoding

Verilog - 13

Single-always Moore Machine
(Not Recommended!)

module reduce (clk, reset, in, out);
input clk, reset, in;

Single-always Moore Machine
(Not Recommended!)

All outputs are registered

always @(posedge clk)
case (state)
zero: begin
out = 0;
if (in) state = onel;
else state = zero;
end
onel:
if (in) begin
state = twols;

out = 1;
. This is confusing: the

end else begin
state = zero;
out = 0;
end
twols:
if (in) begin
state = twols;
out = 1;
end else begin
state = zero;
out = 0;
end
default: begin
state = zero;
out = 0;
end
endcase

output does not change
until the next clock cycle

dmodt 1
endmodule Verilog - 15

output out;
reg out;
reg [1:0] state; // state register
parameter zero = 0, onel = 1, twols = 2; @
1 (]
o 1
1
Verilog - 14
Delays

Delays are used for simulation only
Delays are useful for modeling time behavior of circuit
Synthesis ignores delay humbers
If your simulation relies on delays, your synthesized circuit will
probably not work

#10 inserts a delay of 10 time units in the simulation

module and_gate (out, inl, in2);
input inl, in2;
output out;
assign #10 out = inl & in2;
endmodule

Verilog - 16

Verilog Propagation Delay

assign #5 c = a | b;

May write things differently for finer control of delays

always @(A or B or Cin)
#4 S = A + B + Cin;
#2 Cout = (A & B) |

assign #4 {Cout, S} = Cin + A + B;

(B & Cin) | (A & Cin);

always @ (sum)
if (sum == 0)
#6 zero = 1;
else
#3 zero = 0;

assign #3 zero = (sum == 0) ? 1

2 0;

Verilog - 17

Initial Blocks

Like always blocks
execute once at the very beginning of simulation
not synthesizeable
use reset instead

Verilog - 18

Tri-State Buffers

'Z value is the tri-stated value
This example implements tri-state drivers driving BusOut

module tstate (EnA, EnB, BusA, BusB, BusOut);
input EnA, EnB;
input [7:0] BusA, BusB;
output [7:0] BusOut;

assign BusOut = EnA ? BusA : 8'bZ;

assign BusOut = EnB ? BusB : 8'bZ;
endmodule

Verilog - 19

Test Fixtures

Provides clock
Provides test vectors/checks results
test vectors and results are precomputed
usually read vectors from file
Models system environment
Complex program that simulates external environment
Test fixture can all the language features
initial, delays, read/write files, etc.

Simulation

Circuit Description

Test Fixture

Verilog - 20

Verilog Clocks

ClockGenerator

module clockGenerator (CLK);
parameter period = 10;
parameter howlong = 100; . .
output CLK; Values assigned in blocks

reg CcLk; «———— __— haveto be declared “reg”
initial begin
=0;

CIK =
#(period/2);
repeat (howlong) begin
CLK = 1;
(period-period/2) ;
CLK = 0;
#(period/2); Stops the simulation
end
$finish;
end

endmodule // clockGenerator

Verilog - 21

Verilog Clocks

Another clock generator

use "define to make constants

module clock_gen (masterclk);
/easier to find and change
“define PERIOD = 10;

i

output masterclk;
reg masterclk;

initial masterclk =

always begin use of initial and always
PERIOD/2 blocks
masterclk = ~masterclk;

end

endmodule

Verilog - 22

Example Test Fixture

module stimulus (a, b, ¢);
module full addrl (A, B, Cin, S, Cout);

parameter delay = 10;
output <

a, b, input A, B, Cin;
reg [2:0] ent;

output S, Cout;

initial begin assign (Cout, S} = A + B + Cin;
€ = 0; endmodule
repeat (8) begin
#delay cnt=cnt+1;
end
#delay $£inish;
end

assign {c, a, b} = ent;
endmodule
module driver; // Structural Verilog connects test-fixture to full adder
wire a, b, cin, sum, cout
stimulus stim (a, b, cin);
full addrl fal (a, b, cin, sum, cout);

initial begin
$monitor ("@ time=$0d cin=ib, a=%b, b=3b, cout=td,
Stime, cin, a, b, cout, sum);

sum=%d",

end
endmodule
Verilog - 23

Simulation Driver

module stimulus (a, b);

parameter delay = 10;
reg [1:0] cnt;

initial block executed

initial begin ——
only once at start of

cnt = 0;

repeat (4) begin
#delay cnt = cnt + 1;

end /

#delay $finish;

end
/ bundles two signals
assign {a, b} = ent; into a vector

endmodule

Verilog - 24

Test Vectors

module testData(clk, reset, data);
input clk;
output reset, data;
reg [1:0] testVector [100:0];
reg reset, data;
integer count;

initial begin
$readmenmb ("data.b", testVector);
count = 0;
{ reset, data } = testVector([0];
end

always @(posedge clk) begin
count = count + 1;

#1 { reset, data } = testVector[count];
end
endmodule
Verilog - 25

Verilog Simulation

Interpreted vs. compiled simulation
performance of the simulation
Level of simulation
accuracy of the model

Relationship to synthesis
can all that can be simulated be synthesized?

Verilog - 26

Intepreted vs. Compiled Simulation

Interpreted
data structures constructed from input file
simulator walks data structures and decided when something occurs
basic algorithm:
take an event from queue, evaluate all modules sensitive to that
event, place new events on queue, repeat
Compiled
input file is translated into code that is compiled/linked with kernel
basic algorithm:
same as above
except that now functions associated with elements are simply
executed and directly place events on queue
overhead of compilation must be amortized over total simulation
time and its harder to make changes - need dynamic linking

Verilog - 27

Simulation Level

Electrical
solve differential equations for all devices simultaneously to determine
precise analog shape of waveforms
Transistor
model individual transistors as switches - this can be close to electrical
simulation if restricted to digital circuits
Gate
use abstraction of Boolean algebra to view gates as black-boxes if only
interested in digital values and delay
Cycle or register-transfer
determine correct values only at clock edges, ignore gate delays if
interested only in proper logical behavior of detailed implementation
Functional (or behavioral) level
no interest in internal details of circuit implementation (just a program)

Verilog - 28

Simulation Time and Event Queues

Event queue
changes in signal values are "events" placed on the queue
queue is a list of changes to propagate
priority queue of pending events based on time of occurrence
multiple events on same signal can be on queue
Time
advanced whenever an event is taken of f the queue
advance to time of event
parallel activities are implicitly interleaved
what do we do about events with zero delay?

Verilog - 29

Verilog Time

All computations happen in zero time unless there are explicit delays or
waits in the code
#delay - blocks execution until that much time has passed
event placed on queue to wake up block at that time
@ or wait - waits for an event, e.g., @(posedge clk) and wait(x==0)
nothing happens until that event is taken off the queue
When an event is removed from the queue, all the blocks sensitive to it
are evaluated in parallel and advance to their next blocking point
(delay/wait)
Time advances as long as there are events to process
infinite loops are easy to write
use explicit $finish
use specified number of clock periods

Verilog - 30

Inertial and Transport Delays

Inertial Delay
#H3IX=A;
Wait 3 time units, then assign value of A to X
The usual way delay is used in simulation
models logic delay reasonably
Transport Delay
X<«<=#3A;
Current value of A is assigned to X, after 3 time units
Better model for transmission lines and high-speed logic

Verilog - 31

A few requirements for CSE467...

Draw data-flow diagrams
Algorithm = dataflow = datapath and control
Then instance Verilog modules into Xilinx schematics
Draw state diagrams
And do the state encoding
One-hot
Simplifies combinational logic (reduces # of inputs)
More CLBs for state, but less for logic
Output based = use same bits for outputs and state
Don't need CLBs to decode output from state
Modularize your designs

Verilog - 32

