Pipelining

Adding registers along a path
split combinational logic into multiple cycles
each cycle smaller than previously
increase throughput

~H-

Pipelining and Retiming 1

Pipelining

Delay, d, of slowest combinational stage determines performance
Throughput = 1/d : rate at which outputs are produced

Latency = n-d : number of stages * clock period

Pipelining increases circuit utilization

Registers slow down data, synchronize data paths

Wave-pipelining

no pipeline registers - waves of data flow through circuit
relies on equal-delay circuit paths - no short paths

Pipelining and Retiming 2

When and How to Pipeline?

Where is the best place o add registers?
splitting combinational logic
overhead of registers (propagation delay and setup time
requirements)

What about cycles in data path?
Example: 16-bit adder, add 8-bits in each of two cycles

Pipelining and Retiming 3

Retiming

Process of optimally distributing registers throughout a circuit
minimize the clock period
minimize the number of registers

Pipelining and Retiming 4

Retiming (cont’d)

Fast optimal algorithm (Leiserson & Saxe 1983)

Retiming rules:
remove one register from each input and add one to each output
remove one register from each output and add one to each input

&

Pipelining and Retiming 5

Retiming examples
= Shortening critical paths

»{ot
. @}DI I o I e

= Create simplification opportunities

Pipelining and Retiming 6

Optimal Pipelining

Add registers - use retiming to find optimal location

Pipelining and Retiming 7

Example - Digital Correlator

¥t = 8(x4, ag) + 8(xy_1, ag) + 8(x4_p, ap) + 8(x4_3, a3)
8(x4, ag) = 0 if x # a, 1 otherwise (and passes x along to the right)

Ye

N\
/ P

X¢ Ch ay & a3

Pipelining and Retiming 8

Example - Digital Correlator (cont'd)

Delays: adder, 7; comparator, 3; host, O

cycle time = 24

cycle time = 13

Pipelining and Retiming 9

Retiming Algorithm

Representation of circuit as directed graph
nodes: combinational logic
edges: connections between logic that may or may not include
registers
weights: propagation delay for nodes, number of registers for edges
path delay (D): sum of propagation dealys along path nodes
path weight (W): sum of edge weights along path
always > 0, no asynchronous feedback

Problem statement
given: cycle time, T, and a circuit graph
adjust edge weights (number of registers) so that all path delays <
T, unless their path weight > 1, and the outputs to the host are the
same (in both function and delay) as in the original graph

Pipelining and Retiming 10

Retiming Algorithm Approach

Compute path weights and delays between each pair of nodes
W and D matrices
Choose a cycle time T

Determine if it is possible to assigh new weights so that all paths with
delays greater than T have a weight that is 1 or greater (use linear
programming)

Choose a smaller cycle time and repeat until the smallest T is found

Pipelining and Retiming 11

Computing W and D

W matrix: number of registers on path fromu— v

D matrix: total delay along path from u — v
v, Ve Vg

0

Vi

<
o
<
IS

Vi V2

1720 3 6 9131017
242730 3 6101724
24273033 3101724
2124273033 71421
141720232630 714
7101316192320 7

NouswNn=Io

W,
R
1
2
3
4
5
6
7

Pipelining and Retiming 12

Computing W and D

WI[u,v] = number of registers on the minimum weight path fromu — v
Any retiming changes the weight of all paths by the same constant
i.e. Retiming cannot change which is the minimum weight path

D[u,v] = maximum delay over all paths with W[u,v] registers
Retiming does not affect D[u,v]

These matrices contain all the required register and delay information

If retiming removes all registers from the pathu — v,
then D[u,v] is the largest delay path that results

Pipelining and Retiming 13

Retiming: One Step at a Time

Pipelining and Retiming 14

Retiming: One Step at a Time (cont'd)

Pipelining and Retiming 15

Retiming: Problem Formulation

r(v): number of registers pushed through a node in the forward
direction
Woe(U, V) = Wy, v) + r(u) - r(v)
Problem statement
r(v,) =0 (host is not retimed)
WU, V) = Wy, v) + r(u) - r(v) 20, forall u, v
r(u) - r(v) 2 - w,4(u, v) (no negative registers!)
For all D[u,v] > Tclk,
Wyg(U, V) = wog(u, v) + r(u) -r(v) 2 1
r(u) - r(v) 2 - w,4(u, v) + 1 (every long path has at least 1 reg)
Difference constraints like this can be solved by generating a graph
that represents the constraints and using a shortest ?ath algorithm like
Bellman-Ford to find a set of r(v) values that meets all the constraints
The value of r(v) returned by the algorithm can be used to generate the
new positions of the registers in the retimed circuit

Pipelining and Retiming 16

Retimed Correlator

Pipelining and Retiming 17

Extensions to Retiming

Host interface
add latency
multiple hosts
Area considerations
limit number of registers
optimize logic across register boundaries
peripheral retiming
incremental retiming
pre-computation
Generality
different propagation delays for different signals
widths of interconnections

Pipelining and Retiming 18

Systolic Arrays

Set of identical processing elements
specialized or programmable
Efficient nearest-neighbor interconnections (in 1-D, 2-D, other)
SIMD-like
Multiple data flows, converging to engage in computation

Analogy: data flowing through the system in a
rhythmic fashion — from main memory through
a series of processing elements and back to
main memory

Pipelining and Retiming 19

Example - Convolution

Yj T XWy ot X Wo L X Wy

w, w, w, w,
X = X = X3 = Xy = Xq]
il Fh PRl O

Y1 = X,W, + XW, + XaW5 + X,W,
Yy = XoWy + XaW, + X,W; + XsW,

Y3 = X3W, + X,W, + XsW; + XeW,

Pipelining and Retiming 20

Example - Convolution

Convolution - Another Look

Repeated vector product

x9. X8 X7......X6 x5 x4 X3.....X2...... X1...... x0

Xg = Xs— Xz — Xz— X, = |X,
il il 7Sl /Bl £
Xe = Xs— Xg— X3 — Xp|— X,
il el il 7l /Ml £}
Xe = Xs— Xg— X3— |Xp|— X,
il el el 7 Wil 7 Wl Y
Xe = Xs— Xg— X3|— |X,|— X,
el el 71 bl 7 il
Xg = Xs = Xz = |X3|— [X,[—
T (YT |Y2" ¥s
Xe = X5 — Xg|— [X3]— |X,
Y[~ Y[~ Vs
Xg = X5 = |X4|— [X3|—
Yi|= [Y2[~ |V5
Xg = Xs|— |Xg|— X5
Y2~ | Y3
Pipelining and Retiming 21
Convolution Example
X, XgXsX; X3 X, X, X,
4‘] [M M
[U U
A w, w, W,
0 + + + + Yo

Pipelining and Retiming 23

y3=X
Pipelining and Retiming 22
Convolution Example

X;XgX5 X, X, X, X,
M M
U U U

w; w, w, w,
0 + + + + Y1

Pipelining and Retiming 24

Convolution Example

X; X6 X5 Xg X, X.

X

4 a 3 ’_‘2
M
U U U
w; w, w, W,
0 + + + + Y

Pipelining and Retiming 25

Pipelining and Retiming 26

Pipelining and Retiming 27

XX XsX, X3 X; Xy Xo

— 1

Pipelining and Retiming 28

Example: Matrix Multiplication

C=AxB € = Tyt Oy

Pipelining and Retiming 29

Example: Matrix Multiplication

I | 1 ba
I T ba3 by
| by by3 by
by b3z by by,
by by, bys |
by by, ||
by I I 1

L1

€11 [C12 |C13 |C1q

€21 [C22 |C23 C2q

€31 |C32 |C33 |C3q

Systolic Algorithms

2D Convolution
Image processing
FFT
String matching
Dynamic programming
DNA comparison
Matrix computations
LU decomposition
QR factorization

Pipelining and Retiming 31

Systolic Architectures

Highly parallel
“fine-grained" parallelism
deep pipelining
Local communication
wires are short - no global communication (except CLK)
linear array — no clock skew
increasingly important as wire delays increase (relative to gate delays)
Linear arrays
most systolic algorithms can be done with a linear array
include memory in each cell in the array
linear array a better match to I/0 limitations
Contrast to superscalar and vector architectures

Pipelining and Retiming 32

Systolic Computers

Custom chips - early 1980's
Warp (CMU) - 1987
linear array of 10 or more processing cells
optimized inter-cell communication for low-latency
pipelined cells and communication
conditional execution
compiler partitions problem into cells and generates microcode
i-Warp (Intel) - 1990
successor to Warp
two-dimensional array
time-multiplexing of physical busses between cells
32x32 array has 206flops peak performance
not a commercial success
Currently confined to ASIC implementations

Pipelining and Retiming 33

Digital Correlator Revisited

Optimally retimed circuit (clock cycle 13)

How can we increase 1l
Work on multiple data sets at the same time

Pipelining and Retiming 34

C-slow’ing a Circuit

Replace every register with C registers

Now retime: (clock cychow

Pipelining and Retiming 35

C-slowing/Retiming for Resource Sharing

irﬂr:ﬁ ator cir‘cui‘rﬂ-H H-H H-H

Pipelining and Retiming 36

Hile rillire

Pipelining and Retiming 37

C-slowed by 4

e il

Insert Data every 4 cycles (one data set)

Computation Active only every 4 Cycles

Retime and remove extra Pipelining

Computation spread over time

Only need one multiplier and one adder

We can use this method to schedule for any number of resources

