Registers

Sample data using clock
Hold data between clock cycles

Computation (and delay) occurs between registers
datain

data out

clock

stable may change

datain

s [[
data out (Q) stable X stable stable

Sequential Logic

Timing Methodologies (cont'd)

Definition of terms
setup time: minimum time before the clocking event
by which the input must be stable (T,)
hold time:minimum time after the clocking event
until which the input must remain stable (T,)

Tu T, data

clock I clock

there is a timing "window"
around the clocking event
during which the input must

remain stable and unchanged clock

in order to be recognized

Sequential Logic

Typical timing specifications

Positive edge-triggered D flip-flop
setup and hold times
minimum clock width
propagation delays (low to high, high to low, max and typical)

CLK Tw 7ns\L
1
Q
(24 [15ns

all measurements are made from the clocking event that is,
the rising edge of the clock

Sequential Logic

Synchronous System Model

Register-to-register operation
Perform operations during transfer
Many transfers/operations occur simultaneously

Q /%

o ;’_‘ -
A

Sequential Logic

System Clock Frequency

Register transfer must fit into one clock cycle
reg tog + C.L. toa + reg teu < Tew
Use maximum delays
Find the “critical path”
Longest register-register delay

=

T

reg ty W b

CL.t

Sequential Logic

Short Paths

Can a path have too little delay?

Yes: Hold time can be violated

tod > th

Use min delay (contamination delay)
Fortunately, most registers have hold time = 0

But there can still be a problem! Clock skew...

o, o,| |

o]
regt,

Sequential Logic

Clock Skew

Cannot make clock arrive at registers at the same time
If skew > 0:
tod > th + tskew
Clock skew can cause system failure
Can you fix this after you've fabbed the chip?

o o,| |

Sequential Logic

Clock Skew

Cannot make clock arrive at registers at the same time
If skew > 0:
tod > th + tskew

Clock skew can cause system failure
Can you fix this after you've fabbed the chip?

o o,| |

Sequential Logic

Clock Skew

If skew < 0:
toi> reg tpa+ CL tpa+ reg tsu + [tskew|
Can you fix this after fab?
Q, /CL\ Q,
N
clk,

clk,

3

O N
regt,,

Ql)

f———————CLt,

Sequential Logic

Clock Skew

If skew < 0:
toi> reg tpa+ CL tpa+ reg tsu + [tskew|
Can you fix this after fab?

N
clky 3 clk,

N I
regt,,

Ql)

f———————CLt,

"skew 'su 'h
Sequential Logic

Clock Skew

Correct behavior assumes that all storage elements sample at
exactly the same time
Not possible in real systems:
clock driven from some central location
different wire delay to different points in the circuit
Problems arise if skew is of the same order as FF contamination
delay
Gets worse as systems get faster (wires don't improve as fast)
1) distribute clock signals against the data flow

2) wire carrying the clock between two communicating
components should be as short as possible

3) try to make all wires from the clock generator be the same
length => clock tree

Sequential Logic

Nasty Example

What can go wrong?
How can you fix it?

D aQ®) [o a| a®E)
AN

CLKA

CLKA/2

Sequential Logic

Other Types of Latches and Flip-Flops

= D-FF is ubiquitous
= simplest design technique, minimizes number of wires
preferred in PLDs and FPGAs
good choice for data storage register
edge-triggered has most straightforward timing constraints
= Historically J-K FF was popular
versatile building block, often requires less total logic
two inputs require more wiring and logic
can always be implemented using D-FF
= Level-sensitive latches in special circumstances
popular in VLSI because they can be made very small (4 T)
fundamental building block of all other flip-flop types
two latches make a D-FF
= Preset and clear inputs are highly desirable
= System reset

Sequential Logic 13

Comparison of latches and flip-flops

CLK D
d positive d
edgetriggere [G I S
flip-flop CLK

Qedge

’ Qatch| [| Il ml

T
CLK

transparent, flow-through
(Ievell-astecr;15|tlve) behavior is the same unless input changes
while the clock is high

Sequential Logic 14

What About External Inputs?

Internal signals are OK
Can only change when clock changes
External signals can change at any time
Asynchronous inputs
Truly asynchronous
Produced by a different clock
This means register may sample a signal that is changing
Violates setup/hold time
What happens?

[]

clkA clkB
Sequential Logic 15

Sampling external inputs

clkA clkB

Sequential Logic 16

Synchronization failure

Occurs when FF input changes close to clock edge
the FF may enter a metastable state — neither a logic 0 nor 1 —
it may stay in this state an indefinite amount of time
this is not likely in practice but has some probability

logic 1

O
AN
e

logic 0 logic 1 logic 0 i

Time —

small, but non-zero probability oscilloscope traces demonstrating
that the FF output will get stuck synchronizer failure and eventual

in an in-between state S ’ N decay to steady state
equential Logic

Calculating probability of failure

= For a single synchronizer
Mean-Time Between Failure (MTBF) =exp (tr/t)/(TOxfxa)

where a failure occurs if metastability persists beyond time tr
= ftris the resolution time - extra time in clock period for settling
= Telk- (g + Top + tigyp)
= fis the frequency of the FF clock
= ais the number of asynchronous input changes per second applied to the FF

= TO and t are constaints that depend on the FF's electrical characteristics
(e.g., gain or steepness of curve)
= example values are TO = .4s and 7 = 1.5ns
(sensitive to temperature, voltage, cosmic rays, etc.).

= Must add probabilities from all synchronizers in system
1/MTBFsystem = £ 1/MTBFsynch

Sequential Logic 18

Metastability
o R

clk

Example
input changes at 1 MHz
system clock of 10MHz, flipflop (t,q + g,
MTBF = exp(95ns / 1.5ns) / (".4s x 15
if we go to 20MHz then:
MTBF = exp(45ns/1.5ns)/ (.4s x2x107x 108) = 1.33 seconds!
And we’re not even doing any logic!

) = 5ns
7% 108) = 25 million years

Must do the calculations and allow enough time for synchronization

Sequential Logic 19

What does this circuit do?

What's wrong with this?

clkA

clkB

Sequential Logic 20

What does this circuit do?

How much better is this?

=

-+ 1

clkA

2
=
L]

Can you do better?

Sequential Logic 21

Guarding against synchronization failure

Give the register time to decide
Probability of failure cannot be reduced to 0, but it can be

reduced
Slow down the system clock?
Use very fast technology for synchronizer -> quicker decision?

Cascade two synchronizers?

asynchronous
input

synchronized
input

Sequential Logic 22

Stretching the Resolution Time

Also slows the sample rate and transfer rate

CLKA

CLKB/2

Sequential Logic 23

Sampling Rate

How fast does your sample clock need to be?

|_|A |_|B c

clkA kB

Sequential Logic 24

Sampling Rate

How fast does your sample clock need to be? f(clkB) > 2f(clkA)

|_|A |_|B c

clkA

clkB

D(A)

cka ML LM LML
Q(A)

[[[[[
es L L L L1
Q(B) | 0 | 0 | 0 i 0 | 0
Q(C) i [1] i 0 ! [1] i 0 i [1]
Sequential Logic 25

Sampling Rate

What if sample clock can’t go faster?
If input clock is not available, no solution(?)
If input clock is available (e.g. video codec)

Sequential Logic 26

Increasing sample rate

The problem is the relative sample rate
Slow down the input clock!

clkB

clkA

Sequential Logic 27

Another Problem with Asynchronous inputs

What goes wrong here? (Hint: it's not a metastability thing)

What is the fix?

| B

Sequential Logic 28

More Asynchronous inputs

What is the problem?
What is the fix?

Sequential Logic 29

Important Rule!

Exactly one register makes the synchronizing decision

async
input
——m
-
L
Sequential Logic 30

More Asynchronous inputs

Can we input asynchronous data values with several bits?

8 |_|A8 |_|BB|_|CS

clkA kB

Sequential Logic 31

More Asynchronous inputs

How can we input asynchronous data values with several bits?

8 |_|A8 |_|BB|_|CS

clkA kB
cka L LTI
Q(A)[7:0] %00 X xFF

4 + + + +
cke L L L LI L
Q(B)[7:0]__{ x00 | x00 |[x00/xFF| xFF | xFF
QEC)[7:0]__{ x00 | x00 | x00 | xAA | xFF

1]
Sequential Logic 32

What Went Wrong?

Each bit has a different delay
Wire lengths differ
Gate thresholds differ
Driver speeds are different
Register delays are different
Rise vs. Fall times
Clock skews to register bits
Bottom line — “data skew” is inevitable
aka Bus Skew
Longer wires => More skew
What is the solution??

Sequential Logic 33

Sending Multiple Data Bits

Must send a “clock” with the data
Waits until data is stable
De-skewing delay

f(clkB) > 2 f(clkA)

CclkA ™ dataValid

g

=
= —
@

Sequential Logic 34

Sending Multiple Data Bits

Balancing path delays . . .
What'’s wrong with this solution?
What's the right way to do it?

o [

™ dataValid

clkA

e

e
= —
[

Sequential Logic 35

Sending Multiple Data Bits

The right way todo it . . .

clkA ™ dataValid

g

2
= —
[

Sequential Logic 36

Sending Multiple Data Bits

Slightly different alternative . . .

EN I datavalid

clkB
Sequential Logic 37

