
Sequential Logic 1

�����

�����	

�����
�
��������

������������ ������ ������������

Registers

� Sample data using clock

� Hold data between clock cycles

� Computation (and delay) occurs between registers

�����

�����	

� � � � ��������

Sequential Logic 2

�������������	�
���
�
��
��

����
������������
�����
��

����
��
����������
����	����

��	��
���������
���
���
����

�
������������������
����

�����

����

�
�
�	
�������

	
���

�����

��� �

Timing Methodologies (cont’d)

� Definition of terms
� setup time: minimum time before the clocking event

by which the input must be stable (Tsu)
� hold time:minimum time after the clocking event

until which the input must remain stable (Th)

�����

����
� � � �

Sequential Logic 3

����	������	�
�������	�������	�����������
�����
�����������

��������
�������������������

Typical timing specifications

� Positive edge-triggered D flip-flop
� setup and hold times
� minimum clock width
� propagation delays (low to high, high to low, max and typical)

��
�
�

�
 �
�

����
����
�

����
���!
�

���
�
�

"

#$%

&

���
�
�

��
�
�

Sequential Logic 4

Synchronous System Model

� Register-to-register operation

� Perform operations during transfer

� Many transfers/operations occur simultaneously

Combinational
Logic

Q0 Q1

Sequential Logic 5

System Clock Frequency

� Register transfer must fit into one clock cycle
� reg tpd + C.L. tpd + reg tsu < Tclk

� Use maximum delays
� Find the “critical path”

� Longest register-register delay

tsu th

Combinational
Logic

reg tpd

C.L. tpd

Q0 Q1

Sequential Logic 6

Short Paths

� Can a path have too little delay?
� Yes: Hold time can be violated
� tpd > th
� Use min delay (contamination delay)

� Fortunately, most registers have hold time = 0
� But there can still be a problem! Clock skew…

tsu th

Q0 Q0

reg tpd

Sequential Logic 7

Clock Skew

� Cannot make clock arrive at registers at the same time

� If skew > 0:
� tpd > th + tskew

� Clock skew can cause system failure
� Can you fix this after you’ve fabbed the chip?

tsu th

Q0 Q0

reg tpd

clk0
δ

clk1

clk0

clk1

tskew
Sequential Logic 8

Clock Skew

� Cannot make clock arrive at registers at the same time

� If skew > 0:
� tpd > th + tskew

� Clock skew can cause system failure
� Can you fix this after you’ve fabbed the chip?

tsu th

Q0 Q0

reg tpd

clk0
δ

clk1

clk0

clk1

tskew

Sequential Logic 9

Clock Skew

� If skew < 0:
� tclk > reg tpd + CL tpd + reg tSU + |tskew|
� Can you fix this after fab?

tsu th

Q0 Q1

reg tpd

clk0
δ

clk1

clk0

clk1

tskew

C.L.

Q0

C.L. tpd

Q1

Sequential Logic 10

Clock Skew

� If skew < 0:
� tclk > reg tpd + CL tpd + reg tSU + |tskew|
� Can you fix this after fab?

tsu th

Q0 Q1

reg tpd

clk0
δ

clk1

clk0

clk1

tskew

C.L.

Q0

C.L. tpd

Q1

Sequential Logic 11

Clock Skew

� Correct behavior assumes that all storage elements sample at
exactly the same time

� Not possible in real systems:
� clock driven from some central location
� different wire delay to different points in the circuit

� Problems arise if skew is of the same order as FF contamination
delay

� Gets worse as systems get faster (wires don't improve as fast)
� 1) distribute clock signals against the data flow
� 2) wire carrying the clock between two communicating

components should be as short as possible
� 3) try to make all wires from the clock generator be the same

length => clock tree

Sequential Logic 12

Nasty Example

� What can go wrong?

� How can you fix it?

D Q

CLKA

Q(A) Q(B)D Q

CLKA/2D Q

CLKA

Sequential Logic 13

Other Types of Latches and Flip-Flops

� D-FF is ubiquitous
� simplest design technique, minimizes number of wires

preferred in PLDs and FPGAs
good choice for data storage register
edge-triggered has most straightforward timing constraints

� Historically J-K FF was popular
versatile building block, often requires less total logic
two inputs require more wiring and logic
can always be implemented using D-FF

� Level-sensitive latches in special circumstances
popular in VLSI because they can be made very small (4 T)
fundamental building block of all other flip-flop types

two latches make a D-FF
� Preset and clear inputs are highly desirable

� System reset

Sequential Logic 14

������������������	���
������
�������
���

����������������������

" &

#$%

��������
����'���������
����'����

" &

#$%

���
�����
������
'�������
(�����'��
������)

�����

"

#$%

&����

&�����

Comparison of latches and flip-flops

Sequential Logic 15

What About External Inputs?

� Internal signals are OK
� Can only change when clock changes

� External signals can change at any time
� Asynchronous inputs
� Truly asynchronous
� Produced by a different clock

� This means register may sample a signal that is changing
� Violates setup/hold time
� What happens?

clkA clkB
Sequential Logic 16

Sampling external inputs

CLKA

Q(A)

CLKB

Q(B) 0 0 1 10/1 ?

clkA clkB

Sequential Logic 17

�	���������
�
'���������������*�
���������++��������
��������������

�
��
��
'���
��
������

����������������������	�
������
�
�*
����
��������������
�����
����

����*���������*������

������, �������
������,

�������

Synchronization failure

� Occurs when FF input changes close to clock edge
� the FF may enter a metastable state – neither a logic 0 nor 1 –
� it may stay in this state an indefinite amount of time
� this is not likely in practice but has some probability

Sequential Logic 18

Calculating probability of failure

� For a single synchronizer

Mean-Time Between Failure (MTBF) = exp (tr / τ) / (T0 × f × a)

where a failure occurs if metastability persists beyond time tr
� tr is the resolution time - extra time in clock period for settling

� Tclk - (tpd + TCL + tsetup)
� f is the frequency of the FF clock

� a is the number of asynchronous input changes per second applied to the FF

� T0 and τ are constaints that depend on the FF's electrical characteristics
(e.g., gain or steepness of curve)
� example values are T0 = .4s and τ = 1.5ns

(sensitive to temperature, voltage, cosmic rays, etc.).
� Must add probabilities from all synchronizers in system

1/MTBFsystem = Σ 1/MTBFsynch

Sequential Logic 19

Metastability

� Example
� input changes at 1 MHz
� system clock of 10MHz, flipflop (tpd + tsetup) = 5ns

MTBF = exp(95ns / 1.5ns) / (.4s × 107 × 106) = 25 million years
� if we go to 20MHz then:

MTBF = exp(45ns / 1.5ns) / (.4s × 2×107 × 106) = 1.33 seconds!
� And we’re not even doing any logic!

� Must do the calculations and allow enough time for synchronization

clk

async
input

Sequential Logic 20

What does this circuit do?

� What’s wrong with this?

clkA clkB

Sequential Logic 21

What does this circuit do?

� How much better is this?

� Can you do better?

clkB
clkA

Sequential Logic 22

� �� �
��*
����
���
�
���

�*
����
����
�
���

���

Guarding against synchronization failure

� Give the register time to decide
� Probability of failure cannot be reduced to 0, but it can be

reduced

� Slow down the system clock?

� Use very fast technology for synchronizer -> quicker decision?

� Cascade two synchronizers?

Sequential Logic 23

Stretching the Resolution Time

� Also slows the sample rate and transfer rate

D Q

CLKA

D Q

CLKB/2D Q

CLKB

D Q

Sequential Logic 24

Sampling Rate

� How fast does your sample clock need to be?

clkB
clkA

A B C

Sequential Logic 25

Sampling Rate

� How fast does your sample clock need to be? f(clkB) > 2f(clkA)

Q(A)

CLKB

Q(B) 0 0 0 00

Q(C) 0 0 0 00

CLKA

D(A)

clkB
clkA

A B C

Sequential Logic 26

Sampling Rate

� What if sample clock can’t go faster?

� If input clock is not available, no solution(?)

� If input clock is available (e.g. video codec)

Sequential Logic 27

Increasing sample rate

� The problem is the relative sample rate
� Slow down the input clock!

clkA

CE

CE

clkB

Sequential Logic 28

Another Problem with Asynchronous inputs

� What goes wrong here? (Hint: it’s not a metastability thing)

� What is the fix?

async
input

Sequential Logic 29

More Asynchronous inputs

� What is the problem?

� What is the fix?

async
input

C. L.
2 2

Sequential Logic 30

Important Rule!

� Exactly one register makes the synchronizing decision

async
input

Sequential Logic 31

More Asynchronous inputs

� Can we input asynchronous data values with several bits?

clkB
clkA

A B C8 8 8 8

Sequential Logic 32

More Asynchronous inputs

� How can we input asynchronous data values with several bits?

clkB
clkA

A B C8 8 8 8

x00/xFF

Q(A)[7:0]

CLKB

x00 x00 xFF xFF

x00 x00 xAA xFFx00

CLKA

Q(B)[7:0]

Q(C)[7:0]

xFFx00

!!

Sequential Logic 33

What Went Wrong?

� Each bit has a different delay
� Wire lengths differ
� Gate thresholds differ
� Driver speeds are different
� Register delays are different

� Rise vs. Fall times

� Clock skews to register bits

� Bottom line – “data skew” is inevitable
� aka Bus Skew
� Longer wires => More skew

� What is the solution??

Sequential Logic 34

Sending Multiple Data Bits

� Must send a “clock” with the data
� Waits until data is stable
� De-skewing delay

� f(clkB) > 2 f(clkA)

clkB

clkA

8

dataValid

CE

Sequential Logic 35

Sending Multiple Data Bits

� Balancing path delays . . .

� What’s wrong with this solution?

� What’s the right way to do it?

clkB

clkA

8

dataValid

CE

Sequential Logic 36

Sending Multiple Data Bits

� The right way to do it . . .

clkB

clkA

8

dataValid

CE

Sequential Logic 37

Sending Multiple Data Bits

� Slightly different alternative . . .

clkB

clkA

8

dataValid

CE
CE

EN

