
1

AN ANALYSIS OF THE ALPHA INSTRUCTION SET
ARCHITECTURE

Allen Fung, Maureen Chesire, Valentin Razmov

1. Introduction
In this document we present the results of a set of experiments performed on the Alpha 21164

instruction set architecture using the jpegtran application (which is to be found at /uns/bin/jpegtran) on a
sample JPEG image file. “jpegtran” is a UNIX utility for applying various kinds of transformations on
image files in that format (e.g. image rotation, transposition, etc.). We chose to instrument this application
because:

a) It is relatively large (168K) and therefore allowed us to generate a sufficient amount of data for
analysis;

b) In a graphical application, it is more likely to encounter some of the “new” instructions
introduced specifically to meet the needs of this type of software.

2. Instruction mix analysis
For our first experiment, we measured the execution frequency of different classes of instructions.

The following statistics were obtained by instrumenting jpegtran and running it on a sample input JPEG
image file:

Instruction Type Instruction Count Frequency

Integer arithmetic and logic 3,956,006 53.37%
Floating point arithmetic 0 0.00%
Data transfer 2,385,380 32.18%
Conditional branch 798,711 10.78%
Unconditional branch 238,926 3.22%
Subroutine calls / returns 18,916 0.26%
Miscellaneous 0 0.00%
Prefetch 0 0.00%
Conditional move 800 0.01%
Multimedia 0 0.00%
Total 7,398,739 99.82%

The results, summarized above, matched our intuitive expectations. As can be seen from the table,
majority of the instructions executed were ALU operations, which is typically the case in any type of
application. Interestingly enough, no floating-point operations were performed. This may be attributed to
the fact that graphics applications tend to be very computationally intensive, performing convolutions on a
large set of similar basic data structures. For this reason, this type of application is usually designed in a
way that would heavily exploit the least expensive operations from the instruction set, which in turn would
significantly improve performance. Since integer arithmetic is much “cheaper” in CPU time than floating-
point arithmetic, we might expect to see graphics applications utilizing very few floating point instructions,
if any.

Another interesting observation is that, according to our measurements, conditional branches
accounted for roughly 75% of all control flow instructions. That means that only one in every four control
flow instructions was a subroutine call, a subroutine return or a jump. This could be attributed to the type of
application. Graphics applications may tend to have a slightly lower percentage of subroutine calls and
returns because most of the computation involves transformations (convolutions) performed in a small
number of subroutines, thus the number of calls and returns from subroutines is less than usual. On a
different note, since control flow changes in this application are primarily attributed to branches, and since
changes in the control flow of a program have a significant effect on performance, optimizing the execution
of branch instructions in this architecture is important.

A little surprisingly, the “new” instructions (conditional moves, data prefetches, multimedia)
accounted for a very small portion of the total number of instructions executed. Our explanation for the

2

displayed infrequency is that these instructions were not widely used by compilers at the time of the
creation of the jpegtran application.

3. Branch Analysis
In our second experiment, we obtained measurements from a sample execution of our instrumented

application for different types of branches. We recorded both the direction of the branch (forward or
backward), as well as whether the branch was taken or not. Following is a summary of the results collected:

Branch Type Instruction Count Frequency

Forward branches taken 187,194 23.44%
Forward branches not taken 292,753 36.65%
Backward branches taken 244,617 30.63%
Backward branches not taken 74,147 9.28%
Total 798,711 100.00%

Notably, 76% of all backward branches were taken, compared to just 39% of all forward branches.
The reason for the big difference is that the typical way of implementing loop structures is through
backward branches. Loops in turn are usually executed multiple times, which explains why three in every
four backward branches were taken and only one fell through. Another interesting observation is that the
frequency of forward branches taken was lower than the frequency of forward branches not taken. Based
on these observations, we claim that a static branch predication scheme which predicts all backward
branches as taken and all forward branches as not taken will most likely yield the best performance for this
particular application. In this case, the compiler should organize the generated code in such a way that
favors forward branches not taken, in order to yield better correct prediction rates from the underlying
architecture.

4. Block size analysis
In this experiment, we measured both the lengths of basic blocks and uninterrupted code sequences

in the application. Following are the histograms of the results obtained:

80119

270555

102308

55058

243224

55390

83055608

1961715859
4434

28151

13799

246107

13912

1108 14 565 10 591 551 10 39 1
0

50000

100000

150000

200000

250000

300000

Absolute number of
occurrences

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Num ber of instructions per block

JPEGTRAN: Basic Block S ize and Frequency

3

Block Type Maximum Sequence Length Average Length
Basic block (static) 65 6.36
Dynamic block (uninterrupted sequence) 107 9.87

Our analysis shows that the number of instructions in a basic block (static) are typically less than the
number of instructions in a dynamic block (i.e., an uninterrupted code sequence). For instance 69% of all
basic blocks had 6 or less instructions, as compared only 45% of all uninterrupted sequences of executed
instructions. Differences in dynamic and static sizes of straight-line code sequences can be attributed to the
fact that a fairly large proportion of branches in this application are not taken. Since they account for about
half (45%) of all branches, different static blocks may sometimes be executed as a straight-line code
sequence. An interesting observation however is that, despite these differences, both static and dynamic
lengths of uninterrupted instruction sequences are relatively short-- the average length in both cases is less
than 10 instructions. Because of these short instruction sequences, we can conclude that branches occur
relatively frequently in this application. The frequency of branches in our instrumented program shows that
the threat of potential stalls from control dependencies is very high. This is especially true in superscalar
processors, since branches will arrive n times faster in an n-issue processor. Without accurate branch
prediction hardware, stalls from control dependencies could occur at every clock cycle in a multiple issue
machine.

5. Instruction and block frequency analysis
In our final experiment, our goal was to determine whether certain portions of the code were

executed more frequently than others, and measure the relative differences in the execution frequency. The
results obtained are presented in the following tables:

30642
22026

9697

210658

19456
11210 8217

1350

10653
5934

44162

9197

28641

7073

209927

1186
7331

2233 2923 305

0

50000

100000

150000

200000

250000

Absolute number of
occurrences

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of instructions per sequence

JPEGTRAN: Length and frequency of uninterrupted code sequences

4

Table 1. Block execution frequency
Frequency of Number of Percentage of the Number of Percentage of the
execution blocks total number of executed total number of
(in times) blocks blocks executed blocks

over 100,000 3 0.06% 614,451 52.72%
10,000 to 100,000 21 0.44% 230,848 19.81%
 1,000 to 10,000 92 1.92% 277,482 23.81%
 100 to 1,000 90 1.88% 34,060 2.92%
 10 to 100 153 3.19% 6,471 0.56%
 1 to 10 1,081 22.53% 2,168 0.19%
 0 3,358 69.99% 0 0.00%
Total 4,798 100.01% 1,165,480 100.01%

Table 2. Instruction execution frequency
Frequency of Number of Percentage of the Number of Percentage of the
execution instructions total number of executed total number of
(in times) instructions instructions executed instructions

over 100,000 21 0.09% 4,353,072 58.73%
10,000 to 100,000 112 0.48% 1,219,682 16.45%
 1,000 to 10,000 536 2.30% 1,563,342 21.09%
 100 to 1,000 601 2.57% 232,572 3.14%
 10 to 100 747 3.20% 31,947 0.43%
 1 to 10 5,883 25.20% 11,858 0.16%
 0 15,449 66.16% 0 0.00%
Total 23,349 100.00% 7,412,473 100.00%

 Assuming constant CPI, we see that about 95% of execution time is being spent on only 2.5% of
the blocks, and almost 70% of the blocks are not being executed at all! The same observation can be made
for instruction execution: 95% of the execution time is spent on about 3% of the instructions, while over
65% of the instructions are not being executed at all. These results are consistent with the use of Amdahl’s
law - most of the execution time is spent on a small subset of the instructions in the application. Based on
these observations, we can clearly see the importance of caches. Since a small part of the program is
executed very frequently, the instructions in the application have high spatial locality. The architecture can
exploit this locality to design a small but fast memory component, which provides a significant
improvement in performance.

