
CSE471 Susan Eggers 19

4 Eliminate the Branch

Predicated execution

• instructions are executed conditionally

• set a condition
• test a condition & execute the instruction if the condition is

true
• if the condition is false, don’t write the instruction’s result in

the register file
• i.e., instruction execution is predicated on the condition

• replaces conditional branch (expensive if mispredicted)

• can fetch & execute instructions on both branch paths
• all instructions depend on the same condition

• eliminates branch latencies by changing a control hazard
to a data hazard

• increases instruction level parallelism (ILP): the number of
independent instructions (see the next slide)

• hard to fit into an existing ISA

CSE471 Susan Eggers 20

Instruction Level Parallelism

Instruction level parallelism (ILP)

• instructions executing at the same time

• from instruction overlap in a pipeline
• from issuing & executing instructions in parallel (later, with

multiple instruction issue)

• can be exploited when instructions are independent of each
other, for example,

• two instructions are independent if their operands are
different

• an example of independent instructions, i.e., ILP

• two instructions are dependent if one of the source
operands of the second is computed by the first

• an example of dependent instructions, i.e., no ILP

• important for executing instructions in parallel and hiding
latencies

ld r1, 0(r2)

or r7, r3, r8

ld r1, 0(r2)

or r7, r1, r8

CSE471 Susan Eggers 21

4 Eliminate the Branch

An example of predicated execution using a conditional move:

bnez R1, L ⇒ cmovz R2, R3, R1

mov R2, R3 L:
L:

Have eliminated an expensive branch instruction

An example that executes both paths:

if (A>B) then X = 4; else X = 0

(condition in R1; A in R2; B in R3; X in R4; 4 in R5)
sgt R1, R2, R3 !set the condition
add R4, R0, R0 !execute the false path
cmovlbs R4, R5, R1 !conditionally move the

true condition

CSE471 Susan Eggers 22

4 Eliminate the Branch

Advantages of predicated execution

+ no branch hazard

+ creates straightline code; therefore better prefetching of
instructions

prefetching = fetch instructions before you need them to
hide cache miss latency

+ more independent instructions, therefore better code scheduling

Disadvantages of predicated execution

- if the condition is false, true path instructions are still executed

- may be hard to add predicated instructions to an existing
instruction set

- additional register pressure

- instructions cannot generate exceptions because you might not
execute that path

- good branch prediction might get the same effect

CSE471 Susan Eggers 23

Today’s Branch Prediction Strategy

Static and dynamic branch prediction work together

Predicting

• gshare

• MIPS R12000 (2K entries, 11 bits of PC, 8 bits of history)
• UltraSPARC-3 (16K entries, 14 bits of PC, 12 bits of history)

• correlated branch prediction

• Pentium III (512 entries, 2-bit)
• Pentium Pro (4 history bits)

• combined branch prediction

• Alpha 21264 has a combination of local (1K entries, 10
history bits) & global (4K entries) predictors

• 2 bits/every 2 instructions in the I-cache (UltraSPARC-1)

BTB

• 512 entries, 4-way set associative (Pentium Pro)

• 32 entries, 2-way set associative (Pentium Pro)

• no BTB; target address is calculated (R10000, Alpha
21164, UltraSPARC-3)

• next address every 4 instructions in the I-cache (Alpha 21264,
UltraSPARC)

• “address” = I-cache entry & set

CSE471 Susan Eggers 24

Today’s Branch Prediction Strategy

Return address stack (Alpha 21264, R10000, Pentium Pro,
UltraSPARC-3)

Resume cache (R10000, UltraSPARC-3)

Predicated execution (Alpha 21264 (conditional move), IA-64:
Itanium (full predication))

