Calculating the Cost of Branches

Factors to consider:

- branch frequency (every 4-6 instructions)
- · correct prediction rate
 - 1 bit: ~ 80% to 85%
 - 2 bit: ~ high 80s to 90%
 - combined branch prediction: 95%
- misprediction penalty

Alpha 21164: 5 cycles; 21264: 7 cycles UltraSPARC 1: 4 cycles Pentium Pro: at least 10 cycles, 15 on average

- · then have to multiply by the instruction width
- or misfetch penalty: have the correct prediction but not know the target address yet (may also apply to unconditional branches)

CSE471

Susan Eggers

25

Calculating the Cost of Branches

What is the probability that a branch is taken?

Given:

- 20% of branches are unconditional branches
- of conditional branches,
 - 66% branch forward & are evenly split between taken & not taken
 - · the rest branch backwards & are almost always taken

Calculating the Cost of Branches

What is the contribution to CPI of conditional branch stalls, given:

• 15% branch frequency

- a BTB for conditional branches only with a
 - 10% miss rate
 - 3-cycle miss penalty
 - 90% prediction accuracy
 - 4 cycle misprediction penalty

BTB result	Prediction	Frequency (per instruction)	Penalty (cycles)	Stalls
miss		.15 * .10 = .015	3	.045
hit	correct	.15 * .90 * .90 = .121	0	0
hit	incorrect	.15 * .90 * .10 = .013	4	.052
Total contribution to CPI				.097

CSE471

Susan Eggers

27

Dynamic Branch Prediction, in Summary

Stepping back, how do you figure out what is important about dynamic branch prediction (or any other part of a processor)?

Prediction Research

Predicting variable values Predicting load addresses Predicting many levels of branches

CSE471

Susan Eggers

29