
CSE548 Advanced Pipelining 1

Cache Hierarchy

Cache hierarchy requirements

• different caches with different sizes & access times & purposes

• level 1 cache -- goal: fast access,
so minimize hit time (the common case)

• small, so can access it in one CPU cycle

(also chip real estate constraints)

• virtually-addressed, so cache accesses can be fast
without constraints on cache size

• direct mapped or set associative?
• direct mapped: faster access

• set associative: better hit ratio
• separate caches for instructions & data

• each is smaller than a unified cache, so the access
time is lower

• configured differently:
instruction cache has larger blocks
instruction cache has no memory update
hardware

CSE548 Advanced Pipelining 2

Cache Hierarchy

• different caches with different sizes & access times & purposes

• level 2 -- goal: keep traffic off the system bus
• big cache, so it will have a high hit ratio

• physically-addressed:
• plenty of time to do address translation

• no flushing on a context switch
• snooping (later)

• direct mapped or set associative?

• same trade-off, same lack of consensus on the
design

• big direct-mapped caches have almost the same
hit ratio as big set associative caches

• but the cache access time is much greater than the
MUX time

• unified, because its hit ratio is higher than that of two
separate caches (I&D) half the size

• write-back
• only use bus for dirty blocks on a block

replacement

How does a cache hierarchy improve cache performance?

CSE548 Advanced Pipelining 3

Measuring Cache Hierarchy Performance

Effective Access Time:

hit timeL1 miss ratioL1 misspenaltyL1•+

hit timeL2 miss ratioL2 misspenaltyL2•+

CSE548 Advanced Pipelining 4

Measuring Cache Hierarchy Performance

Local Miss Ratio:

• # accesses for the L1 cache: the number of references
• # accesses for the L2 cache: the number of misses in the

L1 cache

Example: 1000 references

 40 L1 misses

 10 L2 misses

local MR (L1):

local MR (L2):

#misses
#accesses
-----------------------for that cache!

CSE548 Advanced Pipelining 5

Measuring Cache Hierarchy Performance

Global Miss Rate:

Example: 1000 references

 40 L1 misses

 10 L2 misses

global MR (L1):

global MR (L2):

global MR:

globalMR # misses in cache
references generated by CPU
--=

CSE548 Advanced Pipelining 6

Handling a Cache Miss

(1) Send the address (PC-4 or effective address) to the next level of
the hierarchy

(2) SIgnal a read operation

(3) Wait for the data to arrive

(4) Update the cache entry with data*, rewrite the tag, turn the valid
bit on

(5) Reaccess the cache. This time it will hit.

* There are variations:

• fill the cache block, then send the requested word to the CPU

• send the requested word to the CPU as soon as it arrives at the
cache (early restart)

• requested word is sent from memory first; then the rest of the
block follows (requested word first)

early restart and requested word first have a lower miss penalty,
because they return execution control to the CPU earlier

CSE548 Advanced Pipelining 7

Non-blocking Caches

Non-blocking cache (lockup-free cache)

• allows the CPU to continue executing instructions while a miss
is handled

• some processors allow only 1 outstanding miss (“hit under
miss”)

• some processors allow multiple misses outstanding (“miss
under miss”)

• can be used with both in-order and out-of-order processors

• in-order processors stall when an instruction that uses the
load data is the next instruction to be executed
(nonblocking loads)

• out-of-order processors can execute instructions after the
load consumer

How do non-blocking caches improve cache performance?

CSE548 Advanced Pipelining 8

Non-blocking Cache Implementation

Miss status holding registers (MSHR)

• physical address of the block

• which word in the block

• destination register number

• mechanism to merge requests to the same block

• mechanism to insure accesses to the same location execute in
program order

CSE548 Advanced Pipelining 9

Sub-block Placement

Divide a block into sub-blocks

• sub-block = unit of transfer on a cache miss

• valid bit /sub-block

+ as much spatial locality as the whole block

- but less implicit prefetching

+ the transfer time of a sub-block (good for read misses)

+ possibly decrease write time

+ fewer tags than if each sub-block were a block

- valid bit per subblock

Misses:

• block-level miss: tags didn’t match

• sub-block-level miss: tags matched, valid bit was clear

How does sub-block placement improve cache performance?

ta
g

V data V data V data V data

ta
g

V data V data V data V data

ta
g

V data V data V data V data

ta
g

V data V data V data V data

CSE548 Advanced Pipelining 10

Victim Caches

Victim cache

• small fully-associative cache

• contains the most recently replaced blocks of a direct-mapped
cache

• check it on a cache miss

• alternative to 2-way set-associative cache

• used with direct-mapped caches

Used on Alphas

How do victim caches improve cache performance?

Why do they work?

CSE548 Advanced Pipelining 11

Pseudo-set Associative Caches

Pseudo-set associative cache

• access the cache as though it were direct mapped

• if miss, do a second access with the high-order index bit flipped

• prediction bit for which set to check

How does sub-block placement improve cache performance?

+ miss rate of 2-way set associative cache

+ close to access time of direct-mapped cache

CSE548 Advanced Pipelining 12

Pipeline the Cache Access

Pipeline cache access

• 2 stages

• cache access

• ship data where it needs to go on the chip

• often used when the L1 cache access is 2 cycles

How does sub-block placement improve cache performance?

CSE548 Advanced Pipelining 13

Prefetching

Prefetching

• fetch instructions and/or data before they are needed

• need a non-blocking cache

• instructions

• fetch the next sequential instructions

• data

• stride-based prefetching of arrays

• stream buffers

• where prefetched instructions/data held

• if requested block in the stream buffer, then cache access
is cancelled & another prefetch is done instead

How does prefetching improve cache performance?

CSE548 Advanced Pipelining 14

Review of Address Translation

Address translation:

• maps a virtual address to a physical address, using the page
tables

• high-order bits translated; page offset bits the same for pages &
page frames

Translation Lookaside Buffer (TLB):

• associative cache of most recently translated virtual-to-physical
page mappings

• 32-128-entry, fully associative to 4K-entry direct-mapped

• 4-8 byte blocks
• .5 -1 cycle hit time

• low tens of cycles miss penalty
• misses can be handled in software

some are handled in hardware

• contents

• physical page frame number

• valid bit, dirty bit, reference bit
• access information

• process identifier

• tag is virtual page number or part of virtual page number

• works because of locality of reference within a page

• much faster than address translation using the page tables

CSE548 Advanced Pipelining 15

Using a TLB

(1) Access the TLB using the virtual page number.

(2) If a hit ,
concatenate the physical page number & the page offset bits, to
form a physical address;
set the reference bit ;
if writing, set the dirty bit .

(3) If a miss ,
get the physical address from the page tables;
evict a TLB entry & update dirty/reference bits in the page tables;
update the TLB with the new mapping.

CSE548 Advanced Pipelining 16

Virtual or Physical Addressing

Virtually-addressed caches:

• access with a virtual address (index & tag)

• do address translation on a cache miss

+ faster for hits because no address translation

- need to flush the cache on a context switch

+ process identification (PID) can avoid this

- synonyms

- “the synonym problem”
• if 2 processes are sharing data, two (different) virtual

addresses map to the same physical address

• 2 copies of the same data could reside in the cache
(these are the synonyms)

• on a write, only one will be updated; so the other has
old data

- a solution: memory allocation restrictions

• require processes to share segments, so all synonyms
have the same low order bits

• cache must be <= the segment size

• all synonyms will then map to the same cache location
• If the cache is too small, how can you make it bigger?

CSE548 Advanced Pipelining 17

Virtual or Physical Addressing

Physically addressed caches

• access with a physical address (index & tag)

• do address translation on every access

- increase in hit time because must translate the virtual address
before access the cache

+ increase in hit time can be avoided if address translation is
done in parallel with the cache access

• restrict cache size so that cache index bits are in the
page offset
(page offset bits are the same for virtual & physical
addresses)

• compare the physical tag from the cache to the
physical address (page frame #) from the TLB

• If the cache is too small, how can you make it
bigger?

• can increase cache size, but still use page offset bits
for the index, by increasing associativity

+ no cache flushing on a context switch

+ no synonym problem

CSE548 Advanced Pipelining 18

Machine Comparison

L1 on-chip instruction cache

Alpha 21264 Pentium Pro UltraSparc 1

64KB
2-way
32B block

2-cycle, pipelined
access

virtual index,
virtual tags
TLB in parallel

miss under miss
(8 outstanding
misses w. D $)

prefetching with
stream buffers

8KB
4-way
32B

1-cycle access

virtual index,
physical tags
TLB in parallel

nonblocking

16KB
pseudo 2-way
32B block

1-cycle access

virtual index,
virtual tags

?

CSE548 Advanced Pipelining 19

Machine Comparison

L1 on-chip data cache

Alpha 21164 Pentium Pro UltraSparc 1

64KB
2-way
64B block

2-cycle, pipelined
access

virtual index
physical tags
TLB in parallel

write-back

miss under miss
(8 outstanding
misses w. I $)

dual-ported for reads

8-entry victim $

8KB
2-way
32B block

1 cycle

virtual index
physical tags
TLB in parallel

write-back

nonblocking
(hit under miss)

2 ports/4 banks

16KB
direct- mapped
32B block
16B subblock

1 cycle

virtual index
physical tags
TLB in parallel

write-through
store compres-
sion

miss under miss
(4)

CSE548 Advanced Pipelining 20

Machine Comparison

L2 cache

Alpha 21264 Pentium Pro UltraSparc 1

1MB-16MB
direct-mapped
64B blocks

unified

physical

write-back

?

512KB-4MB
direct-mapped
8B block

pipelined access

unified

physical

write-back

?

256KB
4-way
32B block

physical index
physical tags

nonblocking

requested work first

CSE548 Advanced Pipelining 21

Machine Comparison

TLBs

Alpha 21164 Pentium Pro

64 entries for both data &
instructions

fully associative

can map 1, 8, 64, 512 8KB
pages

64 entries for data/32 for
instructions

4-way

miss handled in hardware

