
CSE471 Susan Eggers 1

In-order vs. Out-of-order Execution

In-order instruction execution

• instructions are fetched, executed & complete in compiler-
generated order

• one stalls, they all stall

• instructions are statically scheduled by the hardware

Out-of-order instruction execution

• instructions are fetched in compiler-generated order

• instruction completion may be in-order (today) or out-of-order
(older computers)

• in between they may be executed out of their compiler-
generated order

• instructions behind a stalled instruction can pass it

• instructions are dynamically scheduled by the hardware

CSE471 Susan Eggers 2

Dynamic Scheduling

Dynamically scheduled or out-or-order processors:

• after instruction decode

• check for structural hazards
instructions can be issued when a functional unit is
available

• check for data hazards
instructions can be dispatched when their operands are
have been calculated or loaded from memory
(can now read registers & execute)

• ready instructions can execute before earlier instructions that
are stalled, e.g., waiting for their operands to be computed

• when go around a load instruction that is stalled for a cache
miss:

• use lockup-free caches that allow instruction issue to
continue while a miss is being satisfied

• the load use instruction still stalls

• when go around a branch instruction:

• the instructions that are issued from the predicted path
are issued speculatively, called speculative
execution

• when the branch is resolved, if the prediction was
wrong, wrong path instructions are flushed from
the pipeline

CSE471 Susan Eggers 3

Speculation

Instruction speculation : executing an instruction that might not be
needed (just in case it is needed)

• must be safe (no additional exceptions)

• must generate the same results

CSE471 Susan Eggers 4

Dynamic Scheduling

Instruction issue does NOT necessarily go in program order

• the hardware decides which instructions should issue next

program order (in-order processors, the fetch order)

lw $3 , 100($4) in execution, cache miss

add $2, $3 , $4 waits until the miss is satisfied

sub $5, $6, $7 waits for the add

execution order (out-of-order processors)

lw $3 , 100($4) in execution, cache miss

sub $5, $6, $7 in execution during the cache miss

add $2, $3 , $4 waits until the miss is satisfied

CSE471 Susan Eggers 5

Data Dependences & RAW Hazards

Cause of the data dependence:

• the result produced by an instruction (the producer) is needed by
a subsequent instruction (the consumer)

• example:

LD F0, 0(F2) (potential RAW hazard)

SUBF _, F0, _

Cause of the RAW hazard:

• there is a >1 cycle delay between producing & using an operand
e.g., a subsequent instruction uses a value loaded from memory

HW solutions

• forwarding hardware (eliminate the hazard)

• pipelined interlock (stall)

Compiler solutions

• code scheduling to place independent instructions between the
producer & consumer

CSE471 Susan Eggers 6

Dependences vs. Hazards

sub $2, $1, $3

or $13, $6, $2

and $12, $2, $5

add $14, $2, $2

sw $15, 100 ($2)

RAW hazard
data dependence

no hazard

CSE471 Susan Eggers 7

Name Dependences & WAR/WAW Hazards

Cause of the name dependence:

• the compiler runs out of registers, so has to reuse them

• example:

• anti-dependence (potential WAR hazard)

DIVF _, F1, _

ADDF F1, _, _

• output dependence (potential WAW hazard)

DIVF F0, F1, F2

ADDF F0, F2, F3

Cause of the WAR & WAW hazards:

• separate functional units (or execution pipelines) for different
instructions that have different numbers of stages,
i.e., instructions take different numbers of cycles

• out-of-order execution may allow the second instruction to
complete before the first

HW solution

• register renaming (coming up soon)

CSE471 Susan Eggers 8

Control Dependences & Hazards

Cause of the control dependence:

• which instructions are executed next depends on the value of a
branch condition

Cause of the control hazard:

• branch condition (& the target) are not known before the next
instruction is fetched

HW solutions

• dynamic branch prediction (2-bit, 2-level, combined, confidence
predictors)

• BTB, return stack

• resume buffer

Compiler solutions

• schedule instructions between the branch and the paths

• static branch prediction

