
11/8/00 CSE 471 Multiprocessors 1

• Your professor du jour:

Steve Gribble
gribble@cs.washington.edu

323B Sieg Hall

– all material in this lecture in Henessey and Patterson, Chapter 8

– 635-640

– 645, 646

– 654-665

11/8/00 CSE 471 Multiprocessors 2

Limitations of parallel processing

• Multiprocessors are used to
– speed up computation

– solve larger problems

• But most workloads include sequential and parallel phases
– synchronization increases sequentiality

– Amdahl’s law will limit speedup

– e.g., with 100 processors, and 10% sequential, what is speedup?

• Communication is expensive (50-10000 clock cycles)
– communication:computation ratio limits speedup

– “embarrassingly parallel” applications

11/8/00 CSE 471 Multiprocessors 3

What is maximum speedup for N processors?

• If a program takes X seconds on a uniprocessor, what is
the fastest it can run on an N-way multiprocessor?

– N?

11/8/00 CSE 471 Multiprocessors 4

SMP (Symmetric MultiProcessors)
single shared-bus systems

Proc.

Caches

Shared-bus

I/O adapterInterleaved
Memory

11/8/00 CSE 471 Multiprocessors 5

Replication of shared data

P1 P2 P3 P4

Mem.

P2 reads A; P3 reads A

11/8/00 CSE 471 Multiprocessors 6

The coherence problem…

Now what happens if P4 writes A??

P1 P2 P3 P4

Mem.

11/8/00 CSE 471 Multiprocessors 7

Cache coherence

• Determines what are valid values returned by a read

• If P1 writes to X, followed by P1 reads from X
• then P1 must read its own write

• If P1 writes to X, then P2 reads from X a short while later
• must have P2 reads P1’s write

• If P1 writes value “A” to X, and P2 writes value “B” to X
at about the same time
• require that if any processor reads “A” then “B”, all processors

must read “A” then “B”.

11/8/00 CSE 471 Multiprocessors 8

“Snooping” vs. “directory based”

• Directory based coherence: (distributed memory machines)
– a special location called a “directory” maintains sharing status of

cache blocks

– cache controllers must explicitly communicate with directory

• Snooping cache coherence: (mostly SMPs)
– all caches maintain the sharing status of cache blocks

– no centralized state

– all cache controllers listen on the shared-memory bus to update
status of cache blocks

– automatic serialization of writes (needed for coherence)

11/8/00 CSE 471 Multiprocessors 9

“Snooping” cache coherence techniques

• Two main flavors:

• Write-invalidate protocols
– P4 sends an invalidate message out on memory bus

– P2 and P3 invalidate the copy in their caches

• Write-update or write-broadcast protocols
– P4’s write is write-through, and sent on memory bus

– the new value of A is snooped by caches of P2 and P3

11/8/00 CSE 471 Multiprocessors 10

Write-update

P1 P2 P3 P4

Mem.

11/8/00 CSE 471 Multiprocessors 11

Write-invalidate

P1 P2 P3 P4

Mem.

Invalid line

11/8/00 CSE 471 Multiprocessors 12

False sharing and write-invalidate

• Occurs when two processors read/write to different words
in the same cache block
– from point of view of cache coherence protocol, looks like the

entire block is shared data

– block bounces back and forth between the processors

– worst case: P1 is constantly reading word X, and P2 is constantly
writing word Y, and both X and Y are in same cache block

11/8/00 CSE 471 Multiprocessors 13

Effects on false sharing…

• larger cache block size?

• larger cache?

• larger miss penalty?

• more processors?

• ways to reduce false sharing:
– compiler optimization (layout of data in memory, block padding)

– cache-conscious programming

• can massively inflate/deflate constants in big-O notation

11/8/00 CSE 471 Multiprocessors 14

State machine implementation of snooping
protocols

• Associate states with each cache block (minimal 3)
– Invalid (can use existing valid bit in cache block)

– Shared (possibly many copies, all up to date - need another bit)

– Modified (dirty data; exists in only one cache - use dirty bit)

• Fourth state (and sometimes more) for performance
purposes
– Exclusive (clean, only copy)

11/8/00 CSE 471 Multiprocessors 15

State transitions for a given cache block

• Events incurred by processor associated with the cache
– Read miss, write miss, write on clean block

• Events incurred by snooping on the bus as result of other
processor actions, e.g.,
– Read miss by Q might make P’s block transit from dirty to clean

– Write miss by Q might make P’s block transit from dirty/clean to
invalid (write invalidate protocol)

Simple 3-state protocol
(CPU activity)

invalid shared

modified

Simple 3-state protocol
(snooped bus activity)

invalid shared

modified

11/8/00 CSE 471 Multiprocessors 18

Illinois protocol: more advanced

• Add 4th exclusive state to enhance performance
– On a write to a block in E state, no need to send an invalidation

message (occurs often for private variables).

• On a read miss with no cache having the block in dirty
state
– Who sends the data: memory or cache (if any)?

• Answer: cache for that particular protocol; other protocols might use
the memory

– If more than one cache, which one?
• Answer: the first to grab the bus (tri-state devices)

11/8/00 CSE 471 Multiprocessors 19

Performance of snoopy protocols

• Performance depends on the length of a write run

• Write run: sequence of write references by 1 processor to a
shared address (or shared block) uninterrupted by either
access by another processor or replacement
– long write runs better to have write invalidate

– short write runs better to have write update

• There have been proposals to make the choice between
protocols at run time

11/8/00 CSE 471 Multiprocessors 20

Wrinkle #1: snooping interfering with CPU

• each bus transaction causes a check on cache tags
– could interfere with CPU’s cache access, stalling processor

• fix #1: extra set of tags for snooping activity
– on cache miss, processor must arbitrate for and update both sets

– if snoop finds match, it must also update both tags for invalidates
or to update shared bit

• fix #2:
– exploit multilevel cache, and cache inclusion property

• every entry in L1 cache also in L2 cache

• snoop uses L2 cache, CPU uses L1 cache

• snoop hit: snoop may need to update L1 cache as well
– can do fix #1 and fix #2 combined…

11/8/00 CSE 471 Multiprocessors 21

Wrinkle #2: atomicity of operations

• protocols assume that operations are atomic
– e.g., assumes write miss can be detected, acquire bus, and receive

response as a single atomic action

• introduces possibility that protocol can deadlock
– to fix, need to augment protocol to deal with non-atomic writes

without adding deadlock

– a topic for a different course…

