
1

Directory-based Cache Coherence
Protocols

– Material in this lecture in Henessey and Patterson, Chapter 8

• pgs. 677-685
– Some material from David Patterson’s slides for CS 252 at

Berkeley

2

Interconnection Networks for Multiprocessors

• Buses have limitations for scalability:
– Physical (number of devices that can be attached)
– Performance (contention on a shared resource: the bus)

• Instead, provide each processor (or cluster of processors)
with its own memory

• A general interconnection network allows processors to
communicate

• Processors have fast access to local memory, slower access
to “remote” memory located at another processor
– NUMA machines (non-uniform memory access)

• What problems does this introduce?

3

Multiprocessor with Distributed Memory (NUMA)

Proc

Mem Mem Mem

Mem Mem Mem

Interconnection network

$ Proc $ Proc $

Proc $Proc $Proc $

4

Cache Coherence in NUMA Machines

• Snooping is not possible on media other than bus/ring

• Broadcast / multicast is not that easy
– In Multistage Interconnection Networks (MINs), potential for

blocking is very large

– In mesh-like networks, broadcast to every node is very inefficient

• How to enforce cache coherence
– Having no caches (Tera MTA)

– By software: disallow caching of shared variables (Cray 3TD)

– By hardware: having a data structure (a directory) that records the
state of each block

5

Directory Protocol

• Similar to Snoopy Protocol: Three states
– Shared: At least 1 processor has data cached, memory up-to-date
– Uncached/Invalid No processor has data cached, memory up-to-date
– Exclusive: 1 processor (owner) has data cached; memory out-of-date

• In addition to cache state, Directory must track which processors have
data when in the shared state (usually bit vector, 1 if processor has
copy)

• Keep it simple(r):
– Writes to non-exclusive data

=> write miss
– Processor blocks until access completes
– Assume messages received

and acted upon in order sent

(slide from Patterson CS 252)

6

Directory Protocol

• No bus and don’t want to broadcast:
– interconnect no longer single arbitration point
– all messages have explicit responses

• Terms: typically 3 processors involved
– Local node where a request originates (interact with CPU cache)
– Home node where the memory location

of an address resides (interact with directory in memory)
– Remote node has a copy of a cache

block, whether exclusive or shared (interact with CPU cache)

• Example messages on following slide:
P = processor number, A = address

(slide from Patterson CS 252)

7

Example: Read Miss to an Uncached Block

Proc

Mem Mem

Mem Mem

Interconnection network

$ Proc $

Proc $Proc $

8

Example: Read Miss to an Exclusive Block

Proc

Mem Mem

Mem Mem

Interconnection network

$ Proc $

Proc $Proc $

9

Directory Protocol Messages
Message type Source Destination Msg Content
Read miss Local cache Home directory P, A

– Processor P reads data at address A;
make P a read sharer and arrange to send data back

Write miss Local cache Home directory P, A

– Processor P writes data at address A;
make P the exclusive owner and arrange to send data back

Invalidate Home directory Remote caches A

– Invalidate a shared copy at address A.
Fetch Home directory Remote cache A

– Fetch the block at address A and send it to its home directory
Fetch/Invalidate Home directory Remote cache A

– Fetch the block at address A and send it to its home directory; invalidate the
block in the cache

Data value reply Home directory Local cache Data

– Return a data value from the home memory (read miss response)
Data write-back Remote cache Home directory A, Data

– Write-back a data value for address A (invalidate response)

(slide from Patterson CS 252)

10

State Transition Diagram for an Individual
Cache Block in a Directory Based System

• States identical to snoopy case; transactions very similar.

• Transitions caused by read misses, write misses, invalidates,
data fetch requests

• Generates read miss & write miss msg to home directory.

• Write misses that were broadcast on the bus for snooping =>
explicit invalidate & data fetch requests.

• Note: on a write, a cache block is bigger, so need to read the
full cache block

(slide from Patterson CS 252)

11

CPU -Cache State Machine

• State machine
for CPU actions
for each
cache block

• Invalid state
if only in
memory

Invalid
Shared

(read/only)

Exclusive
(read/write)

(slide from Patterson CS 252)

12

CPU -Cache State Machine

• State machine
for CPU actions
for each
cache block

• Invalid state
if only in
memory

Fetch/Invalidate
send Data Write

Back message
to home directory

Invalidate

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Read hit

Send Read Miss
message

CPU Write:
Send Write Miss
msg to h.d.

CPU Write:
Send
Write Miss message
to home directory

CPU read hit
CPU write hit

Fetch: send
Data Write Back message
to home directory
(also do same for Read Miss)

(slide from Patterson CS 252)

CPU Read Miss
Send Read Miss

message

CPU Write miss:
Data write-back
Send Write miss

13

State Transition Diagram for the Directory

• Same states & structure as the transition
diagram for an individual cache

• 2 actions: update of directory state & send msgs
to statisfy requests

• Tracks all copies of memory block.

• Also indicates an action that updates the sharing
set, Sharers, as well as sending a message.

(slide from Patterson CS 252)

14

Directory State Machine

• State machine
for Directory actions for each
memory block

• Uncached state
if only in memory Uncached

Shared
(read only)

Exclusive
(read/write)

(slide from Patterson CS 252)

15

Directory State Machine

• State machine
for Directory actions for each
memory block

• Uncached state
if only in memory

Data Write Back:
Sharers = {}

(Write back block)

Uncached
Shared

(read only)

Exclusive
(read/write)

Read miss:
Sharers = {P}
send Data Value
Reply

Write Miss:
send Invalidate
to Sharers;
then Sharers = {P};
send Data Value
Reply msg

Write Miss:
Sharers = {P};
send Data
Value Reply
msg

Read miss:
Sharers += {P};
send Fetch;
send Data Value Reply
msg to remote cache
(Write back block)

Read miss:
Sharers += {P};
send Data Value Reply

Write Miss:
Sharers = {P};
send Fetch/Invalidate;
send Data Value Reply
msg to remote cache (slide from Patterson CS 252)

16

Example Directory Protocol
• Message sent to directory causes two actions:

– Update the directory
– More messages to satisfy request

• Block is in Uncached state: the copy in memory is the current value; only possible
requests for that block are:

– Read miss: requesting processor sent data from memory & requestor made only sharing
node; state of block made Shared.

– Write miss: requesting processor is sent the value & becomes the Sharing node. The
block is made Exclusive to indicate that the only valid copy is cached. Sharers indicates
the identity of the owner.

• Block is Shared => the memory value is up-to-date:
– Read miss: requesting processor is sent back the data from memory & requesting

processor is added to the sharing set.
– Write miss: requesting processor is sent the value. All processors in the set Sharers are

sent invalidate messages, & Sharers is set to identity of requesting processor. The state of
the block is made Exclusive.

(slide from Patterson CS 252)

17

Example Directory Protocol
• Block is Exclusive: current value of the block is held in the cache of

the processor identified by the set Sharers (the owner) => three
possible directory requests:

– Read miss: owner processor sent data fetch message, causing state of block in
owner’s cache to transition to Shared and causes owner to send data to
directory, where it is written to memory & sent back to requesting processor.
Identity of requesting processor is added to set Sharers, which still contains
the identity of the processor that was the owner (since it still has a readable
copy). State is shared.

– Data write-back: owner processor is replacing the block and hence must write
it back, making memory copy up-to-date
(the home directory essentially becomes the owner), the block is now
Uncached, and the Sharer set is empty.

– Write miss: block has a new owner. A message is sent to old owner causing
the cache to send the value of the block to the directory from which it is sent
to the requesting processor, which becomes the new owner. Sharers is set to
identity of new owner, and state of block is made Exclusive.

(slide from Patterson CS 252)

18

Implementing a Directory

• We assume operations atomic, but they are not; reality is
much harder; must avoid deadlock when run out of bufffers
in network (see Appendix E)

• Optimizations:
– read miss or write miss in Exclusive: send data directly to requestor

from owner vs. 1st to memory and then from memory to requestor

(slide from Patterson CS 252)

