
1

Multiprocessor Synchronization

– Material in this lecture in Henessey and Patterson, Chapter 8

• pgs. 694-708
– Some material from David Patterson’s slides for CS 252 at

Berkeley

2

Multiprogramming and Multiprocessing
Imply Synchronization

• Locking
– Critical sections

– Mutual exclusion

– Used for exclusive access to shared resource or shared data for
some period of time

– Efficient update of a shared (work) queue

• Barriers
– Process synchronization -- All processes must reach the barrier

before any one can proceed (e.g., end of a parallel loop).

• Why doesn’t coherency solve these problems?

3

Locking

• Typical use of a lock:
while (!acquire (lock)) /*spin*/

;

/* some computation on shared data (critical section) */

release (lock)

• Acquire based on primitive: Read-Modify-Write
– Basic principle: “Atomic exchange”

– Test-and-set

– Fetch-and-increment

4

Synchronization

Issues for Synchronization:
– Uninterruptable instruction to fetch and update memory (atomic

operation);

– User level synchronization operation using this primitive;

– For large scale MPs, synchronization can be a bottleneck; techniques
to reduce contention and latency of synchronization

(slide from Patterson CS 252)

5

Uninterruptable Instruction to Fetch and
Update Memory

• Atomic exchange: interchange a value in a register for a value in
memory
0 => synchronization variable is free
1 => synchronization variable is locked and unavailable
– Set register to 1 & swap
– New value in register determines success in getting lock

0 if you succeeded in setting the lock (you were first)
1 if other processor had already claimed access

– Key is that exchange operation is indivisible

– Release the lock simply by writing a 0
– Note that every execution requires a read and a write

(slide from Patterson CS 252)

6

Uninterruptable Instruction to Fetch and
Update Memory

• Test-and-set: tests a value and sets it if the value passes the test

• Fetch-and-increment: it returns the value of a memory location
and atomically increments it
– 0 => synchronization variable is free

(slide from Patterson CS 252)

7

Load linked & store conditional

• Hard to have read & write in 1 instruction (needed for atomic
exchange and others)
– Potential pipeline difficulties from needing 2 memory operations
– Makes coherence more difficult, since hardware cannot allow any operations

between the read and write, and yet must not deadlock

• So, use 2 instructions instead…
• Load linked (or load locked) + store conditional

– Load linked returns the initial value
– Store conditional returns 1 if it succeeds (no other store to same memory

location since preceding load) and 0 otherwise

• How could you implement this instruction?

(slide from Patterson CS 252)

8

Load linked & store conditional - Example

• Example doing atomic exchange with LL & SC:
try: mov R3,R4 ; move exchange value

ll R2,0(R1) ; load linked
sc R3,0(R1) ; store conditional
beqz R3,try ; branch if store fails (R3 = 0)
mov R4,R2 ; put load value in R4

• Example doing fetch & increment with LL & SC:
try: ll R2,0(R1) ; load linked

addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store conditional
beqz R2,try ; branch if store fails (R2 = 0)

Note that these code sequences only do a single atomic swap or a fetch & increment – they do
not implement a full lock acquire function (more on this later).

(slide from Patterson CS 252)

9

Spin Locks

• Processor continuously tries to acquire, spinning around a
loop trying to get the lock

li R2,#1
lockit: exch R2,0(R1) ;atomic exchange

bnez R2,lockit ;already locked?

• Spin lock in a cache coherent environment (invalidation-
based):
– Bus utilized during the whole read-modify-write cycle

– Since atomic-exchange writes a location in memory, need to send
an invalidate (even if the lock is not acquired)

– In general loop to test the lock is short, so lots of bus contention

10

Improved Spin Locks (“test and test&set”)

• Be smarter about spinning:
– Want to spin on cache copy to avoid full memory latency

– Likely to get cache hits for such variables, if we can avoid invalidates

• Solution: start by simply repeatedly reading the variable; when it
changes, then try exchange (“test and test&set”):
try: li R2,#1
lockit: lw R3,0(R1) ;load var

bnez R3,lockit ;not free=>spin
exch R2,0(R1) ;atomic exchange
bnez R2,try ;already locked?

• Any remaining performance problems?

(slide from Patterson CS 252)

11

Problems with Improved Spin Lock

• Have a race condition for acquiring a lock that has just
been released.
– All waiting processors will suffer read and write miss

– O(n2) bus transactions for n contending processes.

• Potential improvements
– Queuing Locks (software or hardware)

– Exponential backoff – after each failed attempt to grab the lock,
wait an exponentially increasing amount of time before trying
again (similar to Ethernet collision handling)

12

Queuing Locks

• Basic idea: a queue of waiting processors is maintained in
shared-memory for each lock (best for bus-based
machines)
– Each processor performs an atomic operation to obtain a memory

location (element of an array) on which to spin

– Upon a release, the lock can be directly handed off to the next
waiting processor

13

Barriers

• All processes have to wait at a synchronization point
– End of parallel do loops

• Processes don’t progress until they all reach the barrier
• Low-performance implementation: use a counter

initialized with the number of processes
– When a process reaches the barrier, it decrements the counter

(atomically -- fetch-and-add (-1)) and busy waits
– When the counter is zero, all processes are allowed to progress

(broadcast)

• Lots of possible optimizations (tree, butterfly etc.)
– Is it important? Barriers do not occur that often (Amdahl’s law….)

