
CSE 586 Spring 00 19

Anatomy of a Cache Predictor

Exec. Pred. trigger. Pred. Index.

Pred. Mechan.Feedback

PC; EA;
global/local history

CSE 586 Spring 00 20

Anatomy of a Cache Predictor

Exec. Pred. trigger. Pred. Index.

Pred. Mechan.Feedback

Additional metadata
Associative buffers
Specialized caches

CSE 586 Spring 00 21

Anatomy of a Cache Predictor

Exec. Pred. trigger. Pred. Index.

Pred. Mechan.Feedback

Counters
Stride predictors
Finite context
Markov pred.

CSE 586 Spring 00 22

Anatomy of a Cache Predictor

Exec. Pred. trigger. Pred. Index.

Pred. Mechan.Feedback

Often
imprecise

CSE 586 Spring 00 23

Main Memory

• The last level in the cache – main memory hierarchy is the
main memory made of DRAM chips

• DRAM parameters (memory latency at the DRAM level):
– Access time: time between the read is requested and the desired

word arrives

– Cycle time: minimum time between requests to memory (cycle
time > access time because need for stabilization of address lines)

CSE 586 Spring 00 24

DRAM’s

• Address lines split into row and column addresses. A read
operation consists of:
– RAS (Row access strobe)

– CAS (Column access strobe)

– If device has been precharged, access time = RAS + CAS

– If not, have to add precharge time

– RAS, CAS, and Precharge are of the same order of magnitude

– In DRAM, data needs to be written back after a read, hence cycle
time > access time

CSE 586 Spring 00 25

DRAM
array

Row
address

Column
address

page

Page buffer

CSE 586 Spring 00 26

DRAM and SRAM

• D stands for “dynamic”
– Each bit is single transistor (plus capacitor; hence the need to

rewrite info after a read)

– Needs to be recharged periodically. Hence refreshing. All bits in a
row can be refreshed concurrently (just read the row).

– For each row it takes RAS time.

• S stands for “static”
– Uses 6 transistors/bit (some use 4). No refresh and no need to write

after read (i.e., information is not lost by reading; very much like a
F/F in a register).

CSE 586 Spring 00 27

DRAM vs. SRAM

• Cycle time of SRAM 10 to 20 times faster than DRAM

• For same technology, capacity of DRAM 5 to 10 times that
of SRAM

• Hence
– Main memory is DRAM

– On-chip caches are SRAM

– Off-chip caches (it depends)

• DRAM growth
– Capacity: Factor of 4 every 3 years (60% per year)

– Cycle time. Improvement of 20% per generation (7% per year)

CSE 586 Spring 00 28

How to Improve Main Memory Bandwidth

• It’s easier to improve on bandwidth than on latency

• Sending address: can’t be improved (and this is latency)
– Although split-transaction bus allows some overlap

• Make memory wider (assume monolithic memory)
– Sending one address, yields transfer of more than one word if the

bus width allows it (and it does nowadays)

– But less modularity (buy bigger increments of memory)

CSE 586 Spring 00 29

Interleaving (introducing parallelism at the
DRAM level)

• Memory is organized in banks

• Bank i stores all words at address j modulo i

• All banks can read a word in parallel
– Ideally, number of banks should match (or be a multiple of) the L2

block size (in words)

• Bus does not need to be wider (buffer in the DRAM bank)

• Writes to individual banks for different addresses can
proceed without waiting for the preceding write to finish
(great for write-through caches)

CSE 586 Spring 00 30

Banks of Banks

• Superbanks interleaved by some bits other than lower bits

• Superbanks composed of banks interleaved on low order
bits for sequential access

• Superbanks allow parallel access to memory
– Great for lock-up free caches, for concurrent I/O and for

multiprocessors sharing main memory

CSE 586 Spring 00 31

Limitations of Interleaving (sequential access)

• Number of banks limited by increasing chip capacity
– With 1M x 1 bit chips, it takes 64 x 8 = 512 chips to get 64 MB

(easy to put 16 banks of 32 chips)

– With 16 M x 1 chips, it takes only 32 chips (only one bank)

– More parallelism in using 4M x 4 chips (32 chips in 4 banks)

• In the N * m (N number of MB, m width of bits out of
each chip) m is limited by electronic constraints to about 8
or maybe 16.

CSE 586 Spring 00 32

Example Memory Path of a Workstation

CPU + L1

L2

Data
switch

DRAM

Bank n

Bank 0

16B 32B

Processor bus

Memory bus

To/from I/O bus

CSE 586 Spring 00 33

Page-mode and Synchronous DRAMs

• Introduce a page buffer
– In page mode no need for a RAS

– But if a miss, need to precharge + RAS + CAS

• In SDRAM, same as page-mode but subsequent accesses
even faster (burst mode)

CSE 586 Spring 00 34

Analysis of “Enhanced” DRAM’s

• Analysis : Let
– p be the precharge time, r be RAS, a be CAS, h be hit ratio in page buffer,

b be burst time in SDRAM

– Assume we need 4 accesses to transfer a cache line

– In page mode DRAM, it takes
• r + 4a if the bank was precharged

• 4a if the bank was in page mode and we have a hit

• p + r + 4a if the bank was in page mode and we have a miss

• Access time depends on whether we want to keep the DRAM all the time in
page mode [(p+r).(1-h) + 4a] or not [r+4a] (assuming that we have time to
precharge between accesses)

– Same analysis for SDRAM replacing 4a by a + 3b

CSE 586 Spring 00 35

Cached DRAM and Processor in Memory

• Put some SRAM on DRAM chip
– More flexibility in buffer size than page mode
– Can precharge DRAM while accessing SRAM
– But fabrication is different

• Go one step further (1 billion transistors/chip)
– Put “simple” processor and SRAM and DRAM on chip
– Great bandwidth for processor-memory interface
– Cache with very large block size since parallel access to many

banks is possible
– Can’t have too complex of a processor
– Need to invest in new fabs

CSE 586 Spring 00 36

Processor in Memory (PIM)

• Generality depends on the intended applications

• IRAM
– Vector processor; data stream apps; low power

• FlexRAM
– Memory chip = Host + Simple multiprocessor + banks of DRAM;

memory intensive apps.

• Active Pages
– Co-processor paradigm; reconfigurable logic in memory

• FBRAM
– Graphics in memory

CSE 586 Spring 00 37

Rambus

• Specialized memory controller (scheduler), channel, and
RDRAM’s

• Parallelism and pipelining, e.g.
– Independent row , column, and data buses (narrow -- 2 bytes)

– Pipelined memory subsystem (several packets/access; packets are
4 cycles = 10 ns)

– Parallelism within theRDRAMs (many banks with 4 possible
concurrent operations)

– Parallelism among RDRAM’s (large number of them)

• Great for “streams of data” (Graphics, games)

CSE 586 Spring 00 38

Direct Rambus

Memory
controller

Row [2:0]

Column [4:0]
Data [15:0]

RDRAM 0 RDRAM n,
n up to 31

 Bk 0

 Bk 15

Pg 0

Pg 15

Extremely fast bus (400 MHz
clock, 800 MHz transfer rate)
Great bandwidth for stream
data but still high latency for
random read/writes

CSE 586 Spring 00 39

Split-transaction Bus

• Allows transactions (address, control, data) for different
requests to occur simultaneously

• Required for efficient Rambus

• Great for SMP’s sharing a single bus

CSE 586 Spring 00 40

Evolution in Memory Management
Techniques

• In early days, single program run on the whole machine
– Used all the memory available

• Even so, there was often not enough memory to hold data
and program for the entire run
– Use of overlays, i.e., static partitioning of program and data so that

parts that were not needed at the same time could share the same
memory addresses

• Soon, it was noticed that I/O was much more time
consuming than processing, hence the advent of
multiprogramming

CSE 586 Spring 00 41

Multiprogramming

• Multiprogramming
– Several programs are resident in main memory at the same time

– When one program executes and needs I/O, it relinquishes CPU to
another program

• Some important questions from the memory management
viewpoint:
– How does one program ask for (more) memory

– How is one program protected from another

CSE 586 Spring 00 42

Virtual Memory: Basic idea

• Idea first proposed and implemented at the University of
Manchester in the early 60’s.

• Basic idea is to compile/link a program in a virtual space
as large as the addressing space permits

• Then, divide the virtual space in “chunks” and bring those
“chunks’ on demand in physical memory

• Provide a general (fully-associative) mapping between
virtual “chunks” and physical “chunks”

