Dynamic Scheduling

Why go out of style?
« expensive hardware for the time (actually, still is, relatively)
» regqister files grew so less register pressure
» early RISCs had lower CPIs

Why come back?

 higher chip densities

» greater need to hide latencies as
 discrepancy between CPU & memory speeds increases
* branch misprediction penalty increases

* was generalized to cover more than floating point operations
» handles branches & hides branch latencies
* hides cache misses
e commits instructions in-order to preserve precise interrupts
e uses a more general register renaming mechanism

« 2 styles: large physical register file & reorder buffer

e processors now issue multiple instructions at the same time
* more need to exploit ILP
o 2 styles: superscalars & VLIW processors

CSE471 Susan Eggers 1



Register Renaming with A Physical Register
File (R10000-style)

Register renaming provides a mapping between 2 register sets
« architectural registers defined by the ISA
» physical registers implemented in the CPU

« more of them than architectural registers

» results of the instructions committed so far (in program
order)

» results of subsequent, independent instructions that have
not yet committed

» ~issue width * # pipeline stages between register
renaming & commit

 architectural register associated with a physical register during a
register renaming stage, usually just after decode

» operands thereafter called by their physical register number

* hazards determined by comparing physical register
numbers

Effects:

e eliminates WAW and WAR hazards
* increases ILP

CSE471 Susan Eggers



A Register Renaming Example

Code Segment

Register Mapping

Comments

ld 17 ,0(r6)
add r8, r9, r7

sub r7,r2,r3

CSE471

r/

r8

r/

->  pl

-> p2

->

Susan Eggers

pl is allocated

use pl, notr7

Is allocated
pl is deallocated
when sub commits



The Implementation (R10000)

Modular design with regular hardware data structures
» 64 physical registers (each, for integer & FP)

 map tables for the current architectural-to-physical register
mapping (separate, for integer & FP)

» accessed with an architectural register number
» produces a physical register number

» a destination register is assigned a new physical register
number from a free register list (separate, for integer & FP)

» source operands refer to the latest defined destination
register. i.e., the current mappings

 instruction “queues”  (integer, FP & data transfer)

» contains decoded & mapped instructions with the current
physical register mappings

 Instructions entered into free locations in the 1Q
* sit there until they are dispatched to functional units

* somewhat analogous to Tomasulo reservation stations
without value fields or valid bits

« determines when operands are available

» compares each source operand for instructions in the
|Q to destinations being written this cycle

» determines when an appropriate functional unit is available
 dispatches instructions to functional units

CSE471 Susan Eggers 4



The Implementation (R10000)

e one active list for all uncommitted instructions

CSE471

the extra hardware needed to preserve precise interrupts
instructions entered in program-generated order
allows instructions to complete in program-generated order
the mechanism for maintaining precise interrupts
instructions removed from the active list when:
e an instruction commits:
 the instruction has completed execution
 all instructions ahead of it have completed
* branch is mispredicted
* an exception occurs

contains the previous architectural-to-physical destination
register mapping

» used to recreate the map table for instruction restart
after an exception

Instructions in the other hardware structures & the
functional units are identified by their active list location

Susan Eggers 5



The Implementation (R10000)

* busy-register table (integer & FP):
 indicates whether a physical register contains a value
» used to determine operand availability
* Dbit is set when a register is mapped & leaves the free
list
» cleared when a FU writes the register

CSE471 Susan Eggers



The R10000 in Action 1

Id A3, #(reqg) arch reqister
potential multi-cycle
add A4, A3, reg
sub A3, req, reg
or A5, A3, reg
map table
0
2 Py [ free list
5 | Pz
/
Instruction Queue / Active List
Ins | S1 | Avail | Dest | AL tag Dest | Arch | Done bit
Px |A3 |notdone
A—tak—o =1 |

CSE471

Susan Eggers



The R10000 in Action 2

Id A3, #(reqg) arch reqister
potential multi-cycle
add A4, A3, reg arch register
sub A3, req, reg
or A5, A3, reg
map table
0
3 <«—— freelist
4| 21 !
5 | Pz
/
Instruction Queue / Active List
Ins | S1 | Avail | Dest | AL tag Dest | Arch | Done bit
/Px A3 | not done
te—rtt——6 S S /Py A4 | not done
add P21 1

CSE471

Susan Eggers



The R10000 in Action 3

arch reqister
potential multi-cycle

arch register

arch register A3 redefined
name dependence

Id A3, #(reqg)
add A4, A3, reg
sub A3, req, reg
or A5, A3, reg
map table
0
3|22 |,
4121
S5 |Pz
/
Instruction Queue
Ins | S1 | Avail | Dest | AL tag
SHa—r-tHAE O 2
etk G 6
add 1 |P21 1

CSE471

Susan Eggers

free list
/ Active List
Dest | Arch | Done bit
Px A3 not done
Py |A4 |notdone
A3 done




The R10000 in Action 4

arch reqister A3 defined
potential multi-cycle

arch register A3 used

arch register A3 redefined
name dependence

arch register A3 used

Id A3, #(reqg)
add A4, A3, reg
sub A3, req, reg
or A5, A3, reg
map table
0
3122
-
21
5
/
Instruction Queue
Ins | S1 | Avail | Dest | AL tag
sub unky o0 | | 2
Id unk o | 0
%222-—0—-—-—4—
add (P20 1 |P21 1

CSE471

Susan Eggers

free list

/ Active List
Dest | Arch | Done bit
Px |A3 |notdone
Py |A4 |notdone
P20 |A3 |done
Pz |A5 |done

10



The R10000 in Action: Interrupts 1

potential multi-cycle

arch register A3 used

name dependence

arch register A3 used

Id A3, #(reqg)
add A4, A3, reg
sub A3, req, reg
or A5, A3, reg
map table
0
3|22 |,
4 121
S5 |Pz
/
Instruction Queue
Ins | S1 | Avail | Dest | AL tag
sub | unk o 2
ld unk o | 0
%222-—0—-—-—4—
add (P20 1 |P21 1

CSE471

Susan Eggers

arch reqister A3 defined

arch register A3 redefined

free list
/ Active List
Dest | Arch | Done bit
Px A3 not done
Py |A4 |notdone
P20 | A3 done

11



The R10000 in Action: Interrupts 2

Id A3, #(reg) arch register A3 defined
potential multi-cycle
add A4, A3, reg arch register A3 used
sub A3, reg, reg arch register A3 redefined
name dependence
or A5, A3, reg arch register A3 used
map table
0
S 120 e freelist
4121
S5 |Pz
/
Instruction Queue A%tive List
Ins | S1 | Avail | Dest | AL tag Dest | Arch | Done bit
sub junk 0 | 2 Px |A3 |notdone
idtunk+ 0 | 0 /Py A4 | not done
o | 0 = 3 /
add (P20 1 |P21 1

CSE471

Susan Eggers

12



The R10000 in Action: Interrupts 3

Id A3, #(reg) arch register A3 defined
potential multi-cycle
add A4, A3, reg arch register A3 used
sub A3, reg, reg arch register A3 redefined
name dependence
or A5, A3, reg arch register A3 used
map table
0
3120 [ free list
4 | Py
S5 |Pz
/
Instruction Queue A%tive List
Ins | S1 | Avail | Dest | AL tag Dest | Arch | Done bit
SH—Hik—O0—22 2 Px |A3 |notdone
o ——e—— 1 |
o0 33—
a2 %

CSE471

Susan Eggers

13



The R10000 in Action: Interrupts 4

arch reqister
potential multi-cycle

arch reqister

arch register A3 redefined
name dependence

arch register A3 used

Id A3, #(reqg)

add A4, A3, reg

sub A3, req, reg

or A5, A3, reg
map table
0
3 | Px |
4 | Py
S5 |Pz

/
Instruction Queue
Ins | S1 | Avail | Dest | AL tag

CSE471

Susan Eggers

free list

A%tive List

Dest

Arch

Done hit

14



R10000 Execution

In-order issue (have already fetched instructions)

* rename architectural registers to physical registers via a map
table

» detect structural hazards for instruction queues (integer,
memory & FP) & active list

e iSsue up to 4 instructions to the instruction queues

Out-of-order execution (to increase ILP)

* reservation-station-like instruction queues that indicate when an
operand has been calculated

« each instruction monitors the setting of the busy-register
table

» detect functional unit structural & RAW hazards
» set busy-register table entry for the destination register
 dispatch instructions to functional units

In-order completion (to preserve precise interrupts)

 this & previous program-generated instructions have completed

» physical register in previous mapping returned to free list
 rollback on interrupts

CSE471 Susan Eggers

15



	Dynamic Scheduling
	Why go out of style?
	• expensive hardware for the time (actually, still is, relatively)
	• register files grew so less register pressure
	• early RISCs had lower CPIs

	Why come back?
	• higher chip densities
	• greater need to hide latencies as
	• discrepancy between CPU & memory speeds increases
	• branch misprediction penalty increases

	• was generalized to cover more than floating point operations
	• handles branches & hides branch latencies
	• hides cache misses
	• commits instructions in-order to preserve precise interrupts
	• uses a more general register renaming mechanism
	• 2 styles: large physical register file & reorder buffer


	• processors now issue multiple instructions at the same time
	• more need to exploit ILP
	• 2 styles: superscalars & VLIW processors



	Register Renaming with A Physical Register File (R10000-style)
	Register renaming provides a mapping between 2 register sets
	• architectural registers defined by the ISA
	• physical registers implemented in the CPU
	• more of them than architectural registers
	• results of the instructions committed so far (in program order)
	• results of subsequent, independent instructions that have not yet committed
	• ~ issue width * # pipeline stages between register renaming & commit


	• architectural register associated with a physical register during a register renaming stage, us...
	• operands thereafter called by their physical register number
	• hazards determined by comparing physical register numbers


	Effects:
	• eliminates WAW and WAR hazards
	• increases ILP


	A Register Renaming Example
	ld r7,0(r6)
	r7 -> p1
	p1 is allocated
	...

	add r8, r9, r7
	r8 -> p2
	use p1, not r7
	...

	sub r7, r2, r3
	r7 -> p3
	p3 is allocated
	p1 is deallocated when sub commits

	The Implementation (R10000)
	Modular design with regular hardware data structures
	• 64 physical registers (each, for integer & FP)
	• map tables for the current architectural-to-physical register mapping (separate, for integer & FP)
	• accessed with an architectural register number
	• produces a physical register number
	• a destination register is assigned a new physical register number from a free register list (se...
	• source operands refer to the latest defined destination register. i.e., the current mappings

	• instruction “queues” (integer, FP & data transfer)
	• contains decoded & mapped instructions with the current physical register mappings
	• instructions entered into free locations in the IQ
	• sit there until they are dispatched to functional units
	• somewhat analogous to Tomasulo reservation stations without value fields or valid bits

	• determines when operands are available
	• compares each source operand for instructions in the IQ to destinations being written this cycle

	• determines when an appropriate functional unit is available
	• dispatches instructions to functional units



	The Implementation (R10000)
	• one active list for all uncommitted instructions
	• the extra hardware needed to preserve precise interrupts
	• instructions entered in program-generated order
	• allows instructions to complete in program-generated order
	• the mechanism for maintaining precise interrupts
	• instructions removed from the active list when:
	• an instruction commits:
	• the instruction has completed execution
	• all instructions ahead of it have completed
	• branch is mispredicted
	• an exception occurs


	• contains the previous architectural-to-physical destination register mapping
	• used to recreate the map table for instruction restart after an exception

	• instructions in the other hardware structures & the functional units are identified by their ac...


	The Implementation (R10000)
	• busy-register table (integer & FP):
	• indicates whether a physical register contains a value
	• used to determine operand availability
	• bit is set when a register is mapped & leaves the free list
	• cleared when a FU writes the register



	The R10000 in Action 1
	ld
	unk
	0
	P20
	0

	The R10000 in Action 2
	ld
	A3, #(reg)
	arch register A3 defined potential multi-cycle
	add
	A4, A3, reg
	arch register A3 used
	sub
	A3, reg, reg
	or
	A5, A3, reg

	The R10000 in Action 3
	sub
	unk
	0
	P22
	2
	ld
	unk
	0
	P20
	0
	add
	P20
	1
	P21
	1

	The R10000 in Action 4
	Dest
	Arch
	Done bit
	Px
	A3
	not done
	Py
	A4
	not done
	P20
	A3
	done
	Pz
	A5
	done

	The R10000 in Action: Interrupts 1
	Dest
	Arch
	Done bit
	Px
	A3
	not done
	Py
	A4
	not done
	P20
	A3
	done

	The R10000 in Action: Interrupts 2
	Dest
	Arch
	Done bit
	Px
	A3
	not done
	Py
	A4
	not done

	The R10000 in Action: Interrupts 3
	sub
	unk
	0
	P22
	2
	ld
	unk
	0
	P20
	0
	or
	P22
	0
	P23
	3
	add
	P20
	1
	P21
	1

	The R10000 in Action: Interrupts 4
	R10000 Execution
	In-order issue (have already fetched instructions)
	• rename architectural registers to physical registers via a map table
	• detect structural hazards for instruction queues (integer, memory & FP) & active list
	• issue up to 4 instructions to the instruction queues

	Out-of-order execution (to increase ILP)
	• reservation-station-like instruction queues that indicate when an operand has been calculated
	• each instruction monitors the setting of the busy-register table

	• detect functional unit structural & RAW hazards
	• set busy-register table entry for the destination register
	• dispatch instructions to functional units

	In-order completion (to preserve precise interrupts)
	• this & previous program-generated instructions have completed
	• physical register in previous mapping returned to free list
	• rollback on interrupts



