
Dynamic Scheduling

Why go out of style?

• expensive hardware for the time (actually, still is, relatively)

• register files grew so less register pressure

• early RISCs had lower CPIs

Why come back?

• higher chip densities

• greater need to hide latencies as

• discrepancy between CPU & memory speeds increases
• branch misprediction penalty increases

• was generalized to cover more than floating point operations

• handles branches & hides branch latencies
• hides cache misses
• commits instructions in-order to preserve precise interrupts
• uses a more general register renaming mechanism

• 2 styles: large physical register file & reorder buffer

• processors now issue multiple instructions at the same time

• more need to exploit ILP
• 2 styles: superscalars & VLIW processors
CSE471 Susan Eggers 1

Register Renaming with A Physical Register
File (R10000-style)

Register renaming provides a mapping between 2 register sets

• architectural registers defined by the ISA

• physical registers implemented in the CPU

• more of them than architectural registers
• results of the instructions committed so far (in program

order)
• results of subsequent, independent instructions that have

not yet committed
• ~ issue width * # pipeline stages between register

renaming & commit

• architectural register associated with a physical register during a
register renaming stage, usually just after decode

• operands thereafter called by their physical register number

• hazards determined by comparing physical register
numbers

Effects:

• eliminates WAW and WAR hazards

• increases ILP
CSE471 Susan Eggers 2

A Register Renaming Example

Code Segment Register Mapping Comments

ld r7 ,0(r6) r7 -> p1 p1 is allocated

...

add r8, r9, r7 r8 -> p2 use p1, not r7

...

sub r7 , r2, r3 r7 -> p3 p3 is allocated
p1 is deallocated
when sub commits
CSE471 Susan Eggers 3

The Implementation (R10000)

Modular design with regular hardware data structures

• 64 physical registers (each, for integer & FP)

• map tables for the current architectural-to-physical register
mapping (separate, for integer & FP)

• accessed with an architectural register number
• produces a physical register number
• a destination register is assigned a new physical register

number from a free register list (separate, for integer & FP)
• source operands refer to the latest defined destination

register. i.e., the current mappings

• instruction “queues” (integer, FP & data transfer)

• contains decoded & mapped instructions with the current
physical register mappings

• instructions entered into free locations in the IQ
• sit there until they are dispatched to functional units
• somewhat analogous to Tomasulo reservation stations

without value fields or valid bits
• determines when operands are available

• compares each source operand for instructions in the
IQ to destinations being written this cycle

• determines when an appropriate functional unit is available
• dispatches instructions to functional units
CSE471 Susan Eggers 4

The Implementation (R10000)

• one active list for all uncommitted instructions

• the extra hardware needed to preserve precise interrupts
• instructions entered in program-generated order
• allows instructions to complete in program-generated order
• the mechanism for maintaining precise interrupts
• instructions removed from the active list when:

• an instruction commits:
• the instruction has completed execution
• all instructions ahead of it have completed

• branch is mispredicted
• an exception occurs

• contains the previous architectural-to-physical destination
register mapping

• used to recreate the map table for instruction restart
after an exception

• instructions in the other hardware structures & the
functional units are identified by their active list location
CSE471 Susan Eggers 5

The Implementation (R10000)

• busy-register table (integer & FP):

• indicates whether a physical register contains a value
• used to determine operand availability

• bit is set when a register is mapped & leaves the free
list

• cleared when a FU writes the register
CSE471 Susan Eggers 6

The R10000 in Action 1

Instruction Queue

Ins S1 Avail Dest AL tag

ld unk 0 P20 0

0

31

3
4
5

20

map table

free list

Active List

Dest Arch Done bit

Px A3 not done

ld A3, #(reg) arch register A3 defined
potential multi-cycle

add A4, A3, reg

sub A3, reg, reg

or A5, A3, reg

Pz
Py
CSE471 Susan Eggers 7

The R10000 in Action 2

ld A3, #(reg) arch register A3 defined
potential multi-cycle

add A4, A3, reg arch register A3 used

sub A3, reg, reg

or A5, A3, reg

map table

free list

Active List

Dest Arch Done bit

Px A3 not done

Py A4 not done

0

31

3
4
5

20
21
Pz

Instruction Queue

Ins S1 Avail Dest AL tag

ld unk 0 P20 0

add P20 1 P21 1
CSE471 Susan Eggers 8

The R10000 in Action 3

Instruction Queue

Ins S1 Avail Dest AL tag

sub unk 0 P22 2

ld unk 0 P20 0

add P20 1 P21 1

map table

free list

Active List

Dest Arch Done bit

Px A3 not done

Py A4 not done

P20 A3 done

ld A3, #(reg) arch register A3 defined
potential multi-cycle

add A4, A3, reg arch register A3 used

sub A3, reg, reg arch register A3 redefined
name dependence

or A5, A3, reg

0

31

3
4
5

22

Pz
21
CSE471 Susan Eggers 9

The R10000 in Action 4

map table

free list

Active List

Dest Arch Done bit

Px A3 not done

Py A4 not done

P20 A3 done

Pz A5 done

ld A3, #(reg) arch register A3 defined
potential multi-cycle

add A4, A3, reg arch register A3 used

sub A3, reg, reg arch register A3 redefined
name dependence

or A5, A3, reg arch register A3 used

0

31

3

5

22

23
21

Instruction Queue

Ins S1 Avail Dest AL tag

sub unk 0 P22 2

ld unk 0 P20 0

or P22 0 P23 3

add P20 1 P21 1
CSE471 Susan Eggers 10

The R10000 in Action: Interrupts 1

map table

free list

Active List

Dest Arch Done bit

Px A3 not done

Py A4 not done

P20 A3 done

ld A3, #(reg) arch register A3 defined
potential multi-cycle

add A4, A3, reg arch register A3 used

sub A3, reg, reg arch register A3 redefined
name dependence

or A5, A3, reg arch register A3 used

0

31

3
4
5

22

Pz
21

Instruction Queue

Ins S1 Avail Dest AL tag

sub unk 0 P22 2

ld unk 0 P20 0

or P22 0 P23 3

add P20 1 P21 1
CSE471 Susan Eggers 11

The R10000 in Action: Interrupts 2

map table

free list

Active List

Dest Arch Done bit

Px A3 not done

Py A4 not done

ld A3, #(reg) arch register A3 defined
potential multi-cycle

add A4, A3, reg arch register A3 used

sub A3, reg, reg arch register A3 redefined
name dependence

or A5, A3, reg arch register A3 used

0

31

3
4
5

20

Pz
21

Instruction Queue

Ins S1 Avail Dest AL tag

sub unk 0 P22 2

ld unk 0 P20 0

or P22 0 P23 3

add P20 1 P21 1
CSE471 Susan Eggers 12

The R10000 in Action: Interrupts 3

Instruction Queue

Ins S1 Avail Dest AL tag

sub unk 0 P22 2

ld unk 0 P20 0

or P22 0 P23 3

add P20 1 P21 1

map table

free list

Active List

Dest Arch Done bit

Px A3 not done

ld A3, #(reg) arch register A3 defined
potential multi-cycle

add A4, A3, reg arch register A3 used

sub A3, reg, reg arch register A3 redefined
name dependence

or A5, A3, reg arch register A3 used

0

31

3
4
5

20
Py
Pz
CSE471 Susan Eggers 13

The R10000 in Action: Interrupts 4

map table

free list

Instruction Queue

Ins S1 Avail Dest AL tag

Active List

Dest Arch Done bit

ld A3, #(reg) arch register A3 defined
potential multi-cycle

add A4, A3, reg arch register A3 used

sub A3, reg, reg arch register A3 redefined
name dependence

or A5, A3, reg arch register A3 used

0

31

3
4
5

Px
Py
Pz
CSE471 Susan Eggers 14

R10000 Execution

In-order issue (have already fetched instructions)

• rename architectural registers to physical registers via a map
table

• detect structural hazards for instruction queues (integer,
memory & FP) & active list

• issue up to 4 instructions to the instruction queues

Out-of-order execution (to increase ILP)

• reservation-station-like instruction queues that indicate when an
operand has been calculated

• each instruction monitors the setting of the busy-register
table

• detect functional unit structural & RAW hazards

• set busy-register table entry for the destination register

• dispatch instructions to functional units

In-order completion (to preserve precise interrupts)

• this & previous program-generated instructions have completed

• physical register in previous mapping returned to free list

• rollback on interrupts
CSE471 Susan Eggers 15

	Dynamic Scheduling
	Why go out of style?
	• expensive hardware for the time (actually, still is, relatively)
	• register files grew so less register pressure
	• early RISCs had lower CPIs

	Why come back?
	• higher chip densities
	• greater need to hide latencies as
	• discrepancy between CPU & memory speeds increases
	• branch misprediction penalty increases

	• was generalized to cover more than floating point operations
	• handles branches & hides branch latencies
	• hides cache misses
	• commits instructions in-order to preserve precise interrupts
	• uses a more general register renaming mechanism
	• 2 styles: large physical register file & reorder buffer

	• processors now issue multiple instructions at the same time
	• more need to exploit ILP
	• 2 styles: superscalars & VLIW processors

	Register Renaming with A Physical Register File (R10000-style)
	Register renaming provides a mapping between 2 register sets
	• architectural registers defined by the ISA
	• physical registers implemented in the CPU
	• more of them than architectural registers
	• results of the instructions committed so far (in program order)
	• results of subsequent, independent instructions that have not yet committed
	• ~ issue width * # pipeline stages between register renaming & commit

	• architectural register associated with a physical register during a register renaming stage, us...
	• operands thereafter called by their physical register number
	• hazards determined by comparing physical register numbers

	Effects:
	• eliminates WAW and WAR hazards
	• increases ILP

	A Register Renaming Example
	ld r7,0(r6)
	r7 -> p1
	p1 is allocated
	...

	add r8, r9, r7
	r8 -> p2
	use p1, not r7
	...

	sub r7, r2, r3
	r7 -> p3
	p3 is allocated
	p1 is deallocated when sub commits

	The Implementation (R10000)
	Modular design with regular hardware data structures
	• 64 physical registers (each, for integer & FP)
	• map tables for the current architectural-to-physical register mapping (separate, for integer & FP)
	• accessed with an architectural register number
	• produces a physical register number
	• a destination register is assigned a new physical register number from a free register list (se...
	• source operands refer to the latest defined destination register. i.e., the current mappings

	• instruction “queues” (integer, FP & data transfer)
	• contains decoded & mapped instructions with the current physical register mappings
	• instructions entered into free locations in the IQ
	• sit there until they are dispatched to functional units
	• somewhat analogous to Tomasulo reservation stations without value fields or valid bits

	• determines when operands are available
	• compares each source operand for instructions in the IQ to destinations being written this cycle

	• determines when an appropriate functional unit is available
	• dispatches instructions to functional units

	The Implementation (R10000)
	• one active list for all uncommitted instructions
	• the extra hardware needed to preserve precise interrupts
	• instructions entered in program-generated order
	• allows instructions to complete in program-generated order
	• the mechanism for maintaining precise interrupts
	• instructions removed from the active list when:
	• an instruction commits:
	• the instruction has completed execution
	• all instructions ahead of it have completed
	• branch is mispredicted
	• an exception occurs

	• contains the previous architectural-to-physical destination register mapping
	• used to recreate the map table for instruction restart after an exception

	• instructions in the other hardware structures & the functional units are identified by their ac...

	The Implementation (R10000)
	• busy-register table (integer & FP):
	• indicates whether a physical register contains a value
	• used to determine operand availability
	• bit is set when a register is mapped & leaves the free list
	• cleared when a FU writes the register

	The R10000 in Action 1
	ld
	unk
	0
	P20
	0

	The R10000 in Action 2
	ld
	A3, #(reg)
	arch register A3 defined potential multi-cycle
	add
	A4, A3, reg
	arch register A3 used
	sub
	A3, reg, reg
	or
	A5, A3, reg

	The R10000 in Action 3
	sub
	unk
	0
	P22
	2
	ld
	unk
	0
	P20
	0
	add
	P20
	1
	P21
	1

	The R10000 in Action 4
	Dest
	Arch
	Done bit
	Px
	A3
	not done
	Py
	A4
	not done
	P20
	A3
	done
	Pz
	A5
	done

	The R10000 in Action: Interrupts 1
	Dest
	Arch
	Done bit
	Px
	A3
	not done
	Py
	A4
	not done
	P20
	A3
	done

	The R10000 in Action: Interrupts 2
	Dest
	Arch
	Done bit
	Px
	A3
	not done
	Py
	A4
	not done

	The R10000 in Action: Interrupts 3
	sub
	unk
	0
	P22
	2
	ld
	unk
	0
	P20
	0
	or
	P22
	0
	P23
	3
	add
	P20
	1
	P21
	1

	The R10000 in Action: Interrupts 4
	R10000 Execution
	In-order issue (have already fetched instructions)
	• rename architectural registers to physical registers via a map table
	• detect structural hazards for instruction queues (integer, memory & FP) & active list
	• issue up to 4 instructions to the instruction queues

	Out-of-order execution (to increase ILP)
	• reservation-station-like instruction queues that indicate when an operand has been calculated
	• each instruction monitors the setting of the busy-register table

	• detect functional unit structural & RAW hazards
	• set busy-register table entry for the destination register
	• dispatch instructions to functional units

	In-order completion (to preserve precise interrupts)
	• this & previous program-generated instructions have completed
	• physical register in previous mapping returned to free list
	• rollback on interrupts

