
CSE471 Susan Eggers 1

VLIW Processors

1 very long instruction contains suboperations

• change in the instruction set architecture

Machines: Multiflow & Cydra 5 (8 to 16 suboperations)

IA-64, Crusoe today (3 & 4 suboperations)

CSE471 Susan Eggers 2

VLIW Processors

Goal of the hardware design:

reduce hardware complexity & therefore reduce:

cycle time

 power

• only 1 compiler-generated instruction issued

• 1 program counter

• operations in a bundle issue in parallel

• fixed format so could decode operations in parallel

• enough FUs for types of operations that can issue in parallel
• pipelined FUs

• ramifications for hardware complexity

• no multiple issue hardware (no instruction grouping)

• fewer paths between instruction issue slots & FUs
• ideally no structural hazard checking logic

• no dependence checking for instructions in a bundle
• no hardware for out-of-order instruction issue

CSE471 Susan Eggers 3

VLIW Processors

Compiler support to increase ILP

• compiler creates each VLIW word

• need for good scheduling greater than with in-order issue
superscalars

• instruction doesn’t issue if 1 operation can’t

• detects hazards & hides latencies

• structural hazards
• no 2 operations to the same functional unit

• no 2 operations to the same memory bank
• hiding latencies

• data prefetching
• hoisting loads above stores

• data hazards
• no data hazards among instructions in a bundle

• control hazards

• predicated execution
• static branch prediction

• techniques for increasing ILP

• loop unrolling

• global code scheduling

• software pipelining
• trace scheduling

• aggressive inlining

CSE471 Susan Eggers 4

IA-64 EPIC

Explicitly Parallel Instruction Computing , aka VLIW

Itanium IA-64

Bundle of instructions

• 3 instructions/bundle

• 128 bit bundles

• 2 bundles can be issued; issue one, get another

• implications for performance:

• less delay in bundle issue than 21164-style slotting

CSE471 Susan Eggers 5

IA-64 EPIC

128 integer & FP registers

• 128 additional registers for loop unrolling & similar opts

• implications for architecture:

• 7-bit register specifiers in the instruction format

• implications for hardware:

• no register renaming to eliminate WAW & WAR hazards

• implications for performance:

• less spill code

• longer access time
• more time to save/restore on a context switch

• fewer stalls due to WAR & WAW hazards

CSE471 Susan Eggers 6

IA-64 EPIC 2

Full predicated execution

• supported by 64 predicate registers

• implications for architecture:

• extra register specifier in the instruction format

• implications for the hardware:

• additional functional units to support both branch paths

• implications for exploiting ILP:

• eliminate branch delays & mispredictions

• more independent instructions to execute since can
schedule both paths & merge code together

CSE471 Susan Eggers 7

IA-64 EPIC

Template in a bundle that indicates:

• type of operation for each instruction

• instruction order

• restrictions on which instructions can be in which slots

• M: load & increment index
• I: integer ALU op

• F: FP op
• B: branch

• if can’t issue all instructions in a bundle, insert a stop bit

• implications for hardware:

• no instruction grouping

• fewer paths between issue slots & functional units
• potentially no structural hazard checks

• hardware not have to determine intra-bundle data
dependences

M I I M F B

CSE471 Susan Eggers 8

IA-64 EPIC

Branch prediction

• static branch prediction

• full predicated execution

• hierarchy of BTBs

• 4 target BTB for repeatedly executed code

• instruction to put a specific target in it

• larger BTB for hard-to-predict branches
• instruction hint a target could not be placed in it

• 2-level branch prediction
• private history registers

• 4 history bits
• shared PHTs

• separate 2-level structure for multiway branches

CSE471 Susan Eggers 9

IA-64 EPIC

Still seems complicated

• compatibility

• IA-32

• x86 compatible at the subroutine level
• PA-RISC compatible memory model (segments)

• the sense of little niggling hardware

CSE471 Susan Eggers 10

Superscalars vs. VLIW

Superscalar has more complex hardware for instruction scheduling

• instruction slotting or out-of-order hardware

• more paths between instruction issue structure & functional
units

• possible consequences:

• slower cycle times
• more chip real estate

VLIW has larger code size

• estimates of IA-64 code of up to 2X - 5X over x86

• 128b holds 4 (not 3) instructions on a RISC superscalar

• nops if don’t have an instruction of the correct type
• branch targets much be in the beginning of a bundle

• predicated execution to avoid branches
• extra, special instructions

• consequences:

• increase in instruction bandwidth requirements
• decrease in instruction cache effectiveness

CSE471 Susan Eggers 11

Superscalars vs. VLIW

VLIW require more complex compiler

Superscalars can more efficiently execute pipeline-independent
code

• consequence: don’t have to recompile if change the
implementation

