CSE 471 Autumn 2001

Computer Design and Organization

Midterm
Wednesday November 7th

NAME :

Do all your work on these pages. Do not add any pages. Use back pages if
necessary. Show your work to get partial credit.

This exam is worth 40 points. After each question, you will find the number
of points it is worth. You should spend approximately x minutes on a question
worth x points. That will leave you with 10 minutes to read the statement of
the problem and to look over your work.

1. 20 points

a) 1 point
b) 3 points

¢) 3 points
d) 2 points
e

)
f)
g) 4 points
h) 2 points

3 points

2 points

(
(
(
(
(
(
(
(

2. 20 points

a) 4 points
b) 2 points

d) 8 points

(
(
¢ (c) 3 points
(
(

e) 3 points




The figure below sketches the skeleton of an out-of-order processor that can dis-
patch, issue, and execute 32-bit instructions out-of-order but requires a commit
step to complete them in order. It has two functional units: one for integer,
load /store and branches, and the other for floating-point operations. Each of
the two units has one reservation station. There is a reorder buffer and a register
file. Communication between various units use a Common Data Bus (CDB).

Many of the features of this single issue processor are left undefined on purpose;
you’ll have to define some through your answers to the questions that follow.

The stages through which an instruction go through are:

1. Fetch (IF in the figure).

2. Decode, issue, and dispatch (ID). In this stage, structural hazards are
detected (the flow of instructions stalls if there is a structural hazard),
renaming takes place, reservation station(s) are filled etc.

3. Execute: The integer unit takes 2 cycles to execute; the floating-point unit
takes 4. The units are pipelined.

4. Commit.

res. station

F-p Unit Register file

Integer unit

res. station

Reorder buffer
CDB



1. (20 points) (This question continues on the next 3 pages)
Associated with the processor is a Branch Prediction Unit. It consists of:

e An untagged Branch Prediction Buffer (BPB) of 1024 2-bit saturating
counters.

e A direct-mapped Branch Target Buffer (BTB) of 256 entries.

(a) (1 point)
The BPB is accessed using an index formed by XORing the PC (Program
Counter) bits (19+x-1,19) with PC bits (3+x-1,3). What is the value of x?

x = 10 (10 bits needed to access a 1K table)

(b) (3 points)
How many bits are needed for each entry of the BTB. You can assume that the
two rightmost bits of the 32-bit PC are always 0.

The target address is 30 bits.

The tag of the entry is 32 -2 - 8 = 22 bits long (subtract 2 because rightmost 2
bits are always 0 and the index is 8 to access 256 entries)

Consider now the flow of a branch instruction through the pipeline.

(c) (3 points)
What actions related to branch prediction occur during the IF stage?

The BPB is accessed through the above 10 bit index and the BTB is accessed
through an 8 bit index.

If the BPB returns NT, we just pass the prediction along to the next stage.

If the BPB returns T and there is a miss in the BTB, we just pass the prediction
along to the next stage.

If the BPB returns T and there is a hit in the BTB, we set the PC to the target
address found in the corresponding entry in the BTB. We pass the info (T,
target address) to the next stage(s) so they can be verified later.



(d) (2 points)
What actions related to branch prediction/execution occur during the ID stage?

In all cases, the instruction is decoded, the target address is computed, and an
entry is reserved in the reorder buffer.

If the instruction is not a branch, nothing else related to branch prediction/execution
has to be done.

If the instruction is a branch, we save the current register renaming map. We
pass the (prediction, target address) to the Integer Ezecution unit control. If the
branch was predicted NT that’s all what’s needed.

If the branch was predicted T and there was a hit in the BTB, nothing else needs
to be done.

If the branch was predicted T and there was a miss in the BTB, the instruction
at the computed branch address is fetched. The instruction currently in the IF
stage is squashed.

In case of a predicted taken branch and hit in the BTB, PC modification has
been done in IF and although verification of the target address, i.e., comparison
between the predicted and the computed ones, could be done at this stage we
delay it until until the next stage.

(e) (3 points)
What actions related to branch prediction/execution occur at the end of the
EX stage?

The condition is computed. Then there are 4 cases, the cross-product of (cor-
rect,incorrect) * (NT,T). In all cases the 2-bit pointer corresponding to this
branch will be updated according to the outcome. Also, the outcome of the pre-
diction will be passed to the reorder buffer entry corresponding to this branch.

Case 1: Correct prediction for NT. Nothing more to do.

Case 2: Correct prediction for T. Now we need to check if the computed and
predicted addresses are the same. If not, consider that you have an incorrect
prediction for the reorder buffer sake and fetch the instruction at the corrected
address that you also enter in the BTB. If yes (or if there had been a BTB
miss) (re)enter the adddress in the BTB (it might write the same thing that was
already there but it does not cost you anything to do it).

Case 3: Incorrect prediction for NT. Fetch the instruction at the correct address.
(Re)enter it in the BTB.

Case 4: Incorrect prediction for T. Fetch the instruction at the correct address
given by the old PC that you have carried along all this time.



(f) (2 points)
What actions related to branch execution occur during the commit stage?

If the branch was predicted correctly, nothing has to be done. The branch will
be retired (i.e., its position in the reorder biuffer will be freed) when it becomes
the head of the reorder buffer.

If the branch was predicted incorrectly, all instructions in the reorder buffer
between the branch and the tail of the buffer must be squashed or nullified. There
are several possible implementations. For example, you can free all these reorder
buffer entries and the reservation stations that hold tags corresponding to these
entries and nullify the results of the functional units whose results should go in
these entries. You also need to restore the register renaming map.

(g) (4 points)

The BPB is now replaced by a 2-level branch predictor. The global history is
recorded by 2 shift registers of 10 bits each. The Pattern History Table consists
of 1024 2-bit saturating counters. The branch predictor is thus an SAg(10,2).

How is the direction of a branch predicted?
When and how are the history registers being updated?

The PHT contains the T/NT prediction. At IF time, it is accessed using 1 of
the 2 shift registers. The selection of the shift register is done by using, for
example, bit 30 of the PC (for “odd-PC” and “even-PC” branches).

Since we have a single-issue machine and only a small chance of encountering
a second branch before we know the outcome of the first (at the end of the EX
stage), we update the shift register used in the IF stage for this branch at the
end of the EX stage. We shift left and record a 1 if the branch was teken, a
0 otherwise in the least significant bit. The counters in the PHT will be also
updated at that time



(h) (2 points)
What is needed to transform the 2-level predictor into a gshare predictor?

Instead of using the shift register to access the PHT, we now XOR the shift
register with 10 bits of the PC



2. (20 points) (This question continues on the next 2 pages)

The processor shown on page 2 has a MIPS-like (or DLX-like) ISA and is the
subject of this question.

(a) (4 points)

Give examples of sequences of instructions (instructions can be written in the
form R1 < — R2 + R3) exhibiting respectively RAW, WAW, and WAR
hazards. Which of these hazards is independent of the underlying architecture?

In the examples below, register R1 is the one on which there is a dependency.

RAW WAR WAW
R1 <- R2 + R3 R2 <- R1 * R3 R1 <- R2/R3
R4 <- R1 + RS R1 <- R4 + R5 R1 <- R4 + Rb5

RAW hazards happen regardless of the underlying architecture. WAW and WAR
can be eliminated with schemes such as register renaming

(b) (2 points)
The instruction stream stalls in the presence of structural hazards. Indicate two
sources of structural hazards.

Structural hazards detected at the ID stage and that stall the instruction stream
are:

e Full reorder buffer

e The unit to which an instruction was to be issued has a full reservation

station

Conflict on the CDB is not really a structural hazard. It does not prevent the
instruction stream to progress: one result will be broadcast and if none of the
above 2 conditions exists, new instructions will be fetched.



(c) (3 points)
Which units in the Figure should broadcast their results on the CDB and which
should listen to that broadcast?

The functional units, integer and floating-point, should broadcast their results
on the CDB.

The broadcast should be listen to by the reservation stations and the reorder

buffer.

(d) (8 points)

There are several possibilities for implementing register renaming in this proces-
sor. Describe one particular implementation. Be sure to specify what happens
at the various stages, how you allocate/deallocate resources etc.

One possible implementation is to use the reorder buffer (ROB) to be an exten-
sion of the logical file as well as a keeper of the “in-order” list of instructions.
Assume a 3 operand instruction (for branches, see Question 1 and there are
variations for load/store).

At decode/issue time, the following actions take place:

e Grab an entry at the tail of ROB, say ROBzx (if none, we have a stall).

o Rename the result register with ROBx and enter this mapping in the reg-
ister renaming table

o Get the names (from the registe map) or values of source registers.

e Issue to a reservation station (assuming one is free, otherwise stall) the
values or names of the source registers as well as the destination ROBx of
this instruction.

At execute time, wait till both operands have values. Then you can start execu-
tion.

At end of execute stage, broadcast (result, ROBz) on the CDB. The correspond-
ing entry in the ROB, i.e., ROBzx, as well as reservation stations that have an
operand tagged with ROBz will grab the broadcast value.

In the commit stage, nothing happens for this instruction until ROBz is at the
head of the buffer and it has grabbed its result in a previous broadcast. When
these conditions are fulfilled, the result is sent to the correct logical register
(whose name is gotten from the map). The head of the buffer is moved to the
next entry, thus freeing ROBz.



(e) (3 points)

In the processor shown in the figure, throughput could be enhanced if comple-
tion out-of-order was allowed. Why is it not a good idea to allow out-of-order
completion?

Out-of-order completion presents problems for predicted branches, precise excep-
tions, and interrupts.

For example, if an instruction were allowed to commit its result to a logical
register and it was in program order after a mispredicted branch, one would
have to restore the old value of the result register. The same type of problem
would arise if we wanted to have precise exceptions and restartable interrupts.



