
1

Spring 2006 CSE 471 Review of Pipeline Basics 1

Instruction-Level Parallelism (ILP)

Fine-grained parallelism
Obtained by:

� instruction overlap in a pipeline
� executing instructions in parallel (later, with multiple instruction

issue)
In contrast to:

� loop-level parallelism (medium-grained)
� process-level or task-level or thread-level parallelism (coarse-

grained)

begin with this

Spring 2006 CSE 471 Review of Pipeline Basics 2

Instruction-Level Parallelism (ILP)

Can be exploited when instruction operands are independent of each
other, for example,
� two instructions are independent if their operands are different
� an example of independent instructions

Each thread (program) has very little ILP
� want to increase it
� important for executing instructions in parallel and hiding latencies

ld R1, 0(R2)

or R7, R3, R8

2

Spring 2006 CSE 471 Review of Pipeline Basics 3

Dependences

data dependence: arises from the flow of values through programs
� consumer instruction gets a value from a producer instruction
� determines the order in which instructions can be executed

name dependence: instructions use the same register but no flow of data
between them
� antidependence
� output dependence

ld R1, 32(R3)

add R3, R1, R8

ld R1, 32(R3)

add R3, R1, R8

ld R1, 16(R3)

Spring 2006 CSE 471 Review of Pipeline Basics 4

Dependences

control dependence
� arises from the flow of control
� instructions after a branch depend on the value of the branch�s

condition variable

Dependences inhibit ILP

beqz R2, target

lw r1, 0(r3)
target: add r1, ...

3

Spring 2006 CSE 471 Review of Pipeline Basics 5

Pipelining

Implementation technique (but it is visible to the architecture)
� overlaps execution of different instructions
� execute all steps in the execution cycle simultaneously, but on

different instructions
Exploits ILP by executing several instructions �in parallel�
Goal is to increase instruction throughput

Spring 2006 CSE 471 Review of Pipeline Basics 6

Pipelining

4

Spring 2006 CSE 471 Review of Pipeline Basics 7

Pipelining

Not that simple!
� pipeline hazards (structural, data, control)

� place a soft �limit� on the number of stages
� increase instruction latency (a little)

� write & read pipeline registers for data that is computed in a
stage

� time for clock & control lines to reach all stages
� all stages are the same length which is determined by the

longest stage
� stage length determines clock cycle time

IBM Stretch (1961): the first general-purpose pipelined computer

Spring 2006 CSE 471 Review of Pipeline Basics 8

Hazards

Structural hazards
Data hazards
Control hazards
What happens on a hazard

� instruction that caused the hazard & previous instructions complete
� all subsequent instructions stall until the hazard is removed

(in-order execution)
� instructions that depend on that instruction stall

(out-of-order execution)

5

Spring 2006 CSE 471 Review of Pipeline Basics 9

Structural Hazards

Cause: instructions in different stages want to use the same resource in
the same cycle
e.g., 4 FP instructions ready to execute & only 2 FP units

Solutions:
� more hardware (eliminate the hazard)
� stall (so still execute correct programs)

� less hardware, lower cost
� only for big hardware components

Spring 2006 CSE 471 Review of Pipeline Basics 10

6

Spring 2006 CSE 471 Review of Pipeline Basics 11

Data Hazards

Cause:
� an instruction early in the pipeline needs the result produced by an

instruction farther down the pipeline before it is written to a register
� would not have occurred if the implementation was not pipelined

Types
RAW (data: flow), WAR (name: antidependence), WAW (name:

output)
HW solutions

� forwarding hardware (eliminate the hazard)
� stall via pipelined interlocks

Compiler solution
� code scheduling (for loads)

Spring 2006 CSE 471 Review of Pipeline Basics 12

Dependences vs. Hazards

7

Spring 2006 CSE 471 Review of Pipeline Basics 13

Forwarding

Forwarding (also called bypassing):
� output of one stage (the result in that stage�s pipeline register) is

bused (bypassed) to the input of a previous stage
� why forwarding is possible

� results are computed 1 or more stages before they are written
to a register

� at the end of the EX stage for computational instructions
� at the end of MEM for a load

� results are used 1 or more stages after registers are read
� if you forward a result to an ALU input as soon as it has been

computed, you can eliminate the hazard or reduce stalling

Spring 2006 CSE 471 Review of Pipeline Basics 14

Forwarding Example

8

Spring 2006 CSE 471 Review of Pipeline Basics 15

Forwarding Implementation

Forwarding unit checks to see if values must be forwarded:
� between instructions in ID and EX

� compare the R-type destination register number in EX/MEM
pipeline register to each source register number in ID/EX

� between instructions in ID and MEM
� compare the R-type destination register number in MEM/WB

to each source register number in ID/EX
If a match, then forward the appropriate result values to an ALU source

� bus a value from EX/MEM or MEM/WB to an ALU source

Spring 2006 CSE 471 Review of Pipeline Basics 16

9

Spring 2006 CSE 471 Review of Pipeline Basics 17

Forwarding Hardware

Hardware to implement forwarding:
� destination register number in pipeline registers

(but need it anyway because we need to know which register to
write when storing an ALU or load result)

� source register numbers
(probably only one, e.g., rs on MIPS R2/3000) is extra)

� a comparator for each source-destination register pair
� buses to ship data and register numbers − the BIG cost
� larger ALU MUXes for 2 bypass values

Spring 2006 CSE 471 Review of Pipeline Basics 18

Loads

Loads
� data hazard caused by a load instruction & an immediate use of the

loaded value
� forwarding won�t eliminate the hazard

why? data not back from memory until the end of the MEM stage
� 2 solutions used together

� stall via pipelined interlocks
� schedule independent instructions into the load delay slot

(a pipeline hazard that is exposed to the compiler) so that there
will be no stall

10

Spring 2006 CSE 471 Review of Pipeline Basics 19

Loads

Spring 2006 CSE 471 Review of Pipeline Basics 20

Implementing Pipelined Interlocks

Detecting a stall situation
Hazard detection unit stalls the use after a load

� does the destination register number of the load = either source
register number in the next instruction?

� compare the load write register number in ID/EX to each read
register number in IF/ID

� is the instruction in EX a load?
⇒ if yes, stall the pipe 1 cycle

11

Spring 2006 CSE 471 Review of Pipeline Basics 21

Implementing Pipelined Interlocks

How stalling is implemented:
� nullify the instruction in the ID stage, the one that uses the

loaded value
� change EX, MEM, WB control signals in ID/EX pipeline register

to 0
� the instruction in the ID stage will have no side effects as it

passes down the pipeline
� repeat the instructions in ID & IF stages

� disable writing the PC --- the same instruction will be fetched
again

� disable writing the IF/ID pipeline register --- the load use
instruction will be decoded & its registers read again

Spring 2006 CSE 471 Review of Pipeline Basics 22

Loads

hazard detection

fetch again

decode again

12

Spring 2006 CSE 471 Review of Pipeline Basics 23

Implementing Pipelined Interlocks

Hardware to implement stalling:
� rt register number in ID/EX pipeline register

(but need it anyway because we need to know what register to write
when storing load data)

� both source register numbers in IF/ID pipeline register
(already there)

� a comparator for each source-destination register pair
� buses to ship register numbers
� write enable/disable for PC
� write enable/disable for the IF/ID pipeline register
� a MUX to the ID/EX pipeline register (+ 0s)

Trivial amount of hardware & needed for cache misses anyway

Spring 2006 CSE 471 Review of Pipeline Basics 24

Control Hazards

Cause: condition & target determined after next fetch
Early HW solutions

� stall
� assume an outcome & flush pipeline if wrong
� move branch resolution hardware forward in the pipeline

Compiler solutions
� code scheduling
� static branch prediction

Today�s HW solutions
� dynamic branch prediction

