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Instruction-Level Parallelism (ILP)

Fine-grained parallelism
Obtained by:

� instruction overlap in a pipeline
� executing instructions in parallel (later, with multiple instruction 

issue)
In contrast to:

� loop-level parallelism (medium-grained)
� process-level or task-level or thread-level parallelism (coarse-

grained)

begin with this
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Instruction-Level Parallelism (ILP)

Can be exploited when instruction operands are independent of each 
other, for example, 
� two instructions are independent if their operands are different
� an example of independent instructions

Each thread (program) has very little ILP
� want to increase it
� important for executing instructions in parallel and hiding latencies

ld R1, 0(R2)

or R7, R3, R8
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Dependences

data dependence: arises from the flow of values through programs
� consumer instruction gets a value from a producer instruction
� determines the order in which instructions can be executed

name dependence: instructions use the same register but no flow of data 
between them
� antidependence
� output dependence

ld R1, 32(R3)

add R3, R1, R8

ld R1, 32(R3)

add R3, R1, R8

ld R1, 16(R3)

Spring 2006 CSE 471 Review  of Pipeline Basics 4

Dependences

control dependence
� arises from the flow of control
� instructions after a branch depend on the value of the branch�s 

condition variable

Dependences inhibit ILP

beqz R2, target

lw r1, 0(r3)
target: add r1, ...



3

Spring 2006 CSE 471 Review  of Pipeline Basics 5

Pipelining

Implementation technique (but it is visible to the architecture)
� overlaps execution of different instructions
� execute all steps in the execution cycle simultaneously, but on 

different instructions
Exploits ILP by executing several instructions �in parallel�
Goal is to increase instruction throughput
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Pipelining
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Pipelining

Not that simple!
� pipeline hazards (structural, data, control)

� place a soft �limit� on the number of stages
� increase instruction latency (a little)

� write & read pipeline registers for data that is computed in a 
stage

� time for clock & control lines to reach all stages
� all stages are the same length which is determined by the 

longest stage
� stage length determines clock cycle time

IBM Stretch (1961): the first general-purpose pipelined computer
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Hazards

Structural hazards
Data hazards
Control hazards
What happens on a hazard

� instruction that caused the hazard & previous instructions complete
� all subsequent instructions stall until the hazard is removed

(in-order execution)
� instructions that depend on that instruction stall

(out-of-order execution)
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Structural Hazards

Cause: instructions in different stages want to use the same resource in 
the same cycle
e.g., 4 FP instructions ready to execute & only 2 FP units

Solutions:
� more hardware (eliminate the hazard)
� stall (so still execute correct programs)

� less hardware, lower cost
� only for big hardware components

Spring 2006 CSE 471 Review  of Pipeline Basics 10



6

Spring 2006 CSE 471 Review  of Pipeline Basics 11

Data Hazards

Cause:
� an instruction early in the pipeline needs the result produced by an 

instruction farther down the pipeline before it is written to a register
� would not have occurred if the implementation was not pipelined

Types
RAW (data: flow), WAR (name: antidependence), WAW (name: 

output)
HW solutions

� forwarding hardware (eliminate the hazard)
� stall via pipelined interlocks

Compiler solution
� code scheduling (for loads)
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Dependences vs. Hazards
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Forwarding

Forwarding (also called bypassing):
� output of one stage (the result in that stage�s pipeline register) is 

bused (bypassed) to the input of a previous stage
� why forwarding is possible

� results are computed 1 or more stages before they are written 
to a register

� at the end of the EX stage for computational instructions
� at the end of MEM for a load

� results are used 1 or more stages after registers are read
� if you forward a result to an ALU input as soon as it has been 

computed, you can eliminate the hazard or reduce stalling
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Forwarding Example
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Forwarding Implementation

Forwarding unit checks to see if values must be forwarded:
� between instructions in ID and EX

� compare the R-type destination register number in EX/MEM
pipeline register to each source register number in ID/EX

� between instructions in ID and MEM
� compare the R-type destination register number in MEM/WB

to each source register number in ID/EX
If a match, then forward the appropriate result values to an ALU source

� bus a value from EX/MEM or MEM/WB to an ALU source
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Forwarding Hardware

Hardware to implement forwarding:
� destination register number in pipeline registers

(but need it anyway because we need to know which register to 
write when storing an ALU or load result)

� source register numbers
(probably only one, e.g., rs on MIPS R2/3000) is extra)

� a comparator for each source-destination register pair
� buses to ship data and register numbers − the BIG cost
� larger ALU MUXes for 2 bypass values
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Loads

Loads
� data hazard caused by a load instruction & an immediate use of the 

loaded value
� forwarding won�t eliminate the hazard

why? data not back from memory until the end of the MEM stage
� 2 solutions used together

� stall via pipelined interlocks
� schedule independent instructions into the load delay slot

(a pipeline hazard that is exposed to the compiler) so that there 
will be no stall
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Loads
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Implementing Pipelined Interlocks

Detecting a stall situation
Hazard detection unit stalls the use after a load

� does the destination register number of the load = either source
register number in the next instruction?

� compare the load write register number in ID/EX to each read 
register number in IF/ID

� is the instruction in EX a load?
⇒ if yes, stall the pipe 1 cycle
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Implementing Pipelined Interlocks

How stalling is implemented:
� nullify the instruction in the ID stage, the one that uses the 

loaded value
� change EX, MEM, WB control signals in ID/EX pipeline register 

to 0
� the instruction in the ID stage will have no side effects as it 

passes down the pipeline
� repeat the instructions in ID & IF stages

� disable writing the PC --- the same instruction will be fetched 
again

� disable writing the IF/ID pipeline register --- the load use 
instruction will be decoded & its registers read again
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Loads

hazard detection

fetch again

decode again
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Implementing Pipelined Interlocks

Hardware to implement stalling:
� rt register number in ID/EX pipeline register

(but need it anyway because we need to know what register to write 
when storing load data)

� both source register numbers in IF/ID pipeline register
(already there)

� a comparator for each source-destination register pair
� buses to ship register numbers
� write enable/disable for PC
� write enable/disable for the IF/ID pipeline register
� a MUX to the ID/EX pipeline register (+ 0s)

Trivial amount of hardware & needed for cache misses anyway
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Control Hazards

Cause: condition & target determined after next fetch
Early HW solutions

� stall
� assume an outcome & flush pipeline if wrong
� move branch resolution hardware forward in the pipeline

Compiler solutions
� code scheduling
� static branch prediction

Today�s HW solutions
� dynamic branch prediction


