1 Question 1

1.1 Part A

Make each country into a graph node, and draw an edge between each pair of country nodes if those countries share an edge in the map.

1.2 Part B

F , because it's the most constrained and constrained to one value.

1.3 Part C

A as green because it is the least constraining value.

1.4 Part D

A, C, D, E must be different colors, but they all touch each other and there are only three available colors. In the constraint graph this is represented as a fully connected subgraph involving more nodes (4) than values available (3).

2 Question 2

2.1 Part A

$$
\begin{aligned}
& \forall x, y, z \operatorname{Mother}(y, x) \wedge F a t h e r(z, y) \Rightarrow \text { MaternalGrandfather }(z, x) \\
& \forall x, y \text { MaternalGrandfather }(y, x) \wedge \operatorname{Bald}(y) \wedge \operatorname{Male}(x) \Rightarrow \operatorname{Bald}(x)
\end{aligned}
$$

```
Mother(Brenda,Chris)
Male(Chris)
```


2.2 Part B

Substitute $\{y /$ Brenda,$x /$ Chris, $z /$ Alan $\}$:

Mother $($ Brenda, Chris $) \wedge$ Father (Alan, Brenda $) \Rightarrow$ MaternalGrandfather (Alan, Chris)

Substitute $\{y /$ Alan, $x /$ Chris $\}$:

$$
\text { MaternalGrandfather }(\text { Alan }, \text { Chris }) \wedge \text { Bald(Alan }) \Rightarrow \text { Bald(Chris })
$$

Given Mother (Brenda, Chris) \wedge Father (Alan, Brenda), we apply modus ponens to get MaternalGrandfather(Alan, Chris).

Given MaternalGrandfather(Alan, Chris) \wedge Bald(Alan), we apply modus ponens to get Bald(Chris).

2.3 Part C

Convert the first implication to conjunctive normal form.

$$
\begin{aligned}
& \neg(\text { Mother }(y, x) \wedge \text { Father }(z, y)) \vee \text { MaternalGrandfather }(z, x) \\
& \neg \operatorname{Mother}(y, x) \vee \neg \text { Father }(z, y) \vee \text { MaternalGrandfather }(z, x)
\end{aligned}
$$

Convert the second implication to conjunctive normal form.

$$
\begin{aligned}
& \neg(\text { MaternalGrandfather }(y, x) \wedge \operatorname{Bald}(y) \wedge \operatorname{Male}(x)) \vee \operatorname{Bald}(x) \\
& \\
& \neg \text { MaternalGrandfather }(y, x) \vee \neg \operatorname{Bald}(y) \vee \neg \operatorname{Male}(x) \vee \operatorname{Bald}(x)
\end{aligned}
$$

Perform the following substitutions on the first implication: $\{y /$ Brenda, $x /$ Chris, $z /$ Alan $\}$
\neg Mother $($ Brenda, Chris $) \vee \neg$ Father $($ Alan, Brenda $) \vee$ MaternalGrandfather (Alan, Chris)

Perform the following substitutions on the second implication: $\{y /$ Alan,$x / C h r i s\}$
\neg MaternalGrandfather $($ Alan, Chris $) \vee \neg$ Bald $($ Alan $) \vee \neg$ Male $($ Chris $) \vee$ Bald $($ Chris $)$

Apply resolution between these two implications
\neg Mother $($ Brenda, Chris $) \vee \neg$ Father $($ Alan, Brenda $) \vee \neg$ Bald $($ Alan $) \vee \neg$ Male $($ Chris $) \vee$ Bald $($ Chris $)$

Use the following implications to finish the derivation:

```
true \vee Mother(Brenda,Chris)
```

to get
\neg Father $($ Alan, Brenda $) \vee \neg$ Bald $($ Alan $) \vee \neg$ Male $($ Chris $) \vee$ Bald $($ Chris $)$
then

```
true \vee Father(Alan, Brenda)
```

to get

$$
\neg \text { Bald (Alan }) \vee \neg \text { Male }(\text { Chris }) \vee \text { Bald(Chris })
$$

then

```
true \vee Bald(Alan)
```

to get

$$
\neg M a l e(\text { Chris }) \vee \text { Bald }(\text { Chris })
$$

then

```
true \vee Male(Chris)
```

to get

Bald(Chris)

3 Question 3

3.1 Part A

$P(A, B, C, D, E, F, G)=P(G \mid E, F) P(E \mid D) P(F \mid D) P(D \mid B, C) P(B \mid A) P(C \mid A) P(A)$

3.2 Part B

There are 7 variables.

$$
\begin{gathered}
\operatorname{cost}_{f u l l}=2^{7}-1=127 \\
\operatorname{cost}_{\text {belief }}=\sum_{i=1}^{n} 2^{\mid \text {Parents }\left(X_{i}\right) \mid}=1+2+2+4+2+2+4=17
\end{gathered}
$$

3.3 Part C

No, because the path A-C-D-E-G is not blocked. C, D, and E are not evidence, and case three does not apply.

3.4 Part D

No, because G introduces a dependency between E and F.

4 Question 4

4.1 Part A

$$
\begin{aligned}
P(W) & =P(W \mid S, R) P(S) P(R) \\
& +P(W \mid \neg S, R) P(\neg S) P(R) \\
& +P(W \mid S, \neg R) P(S) P(\neg R) \\
& +P(W \mid \neg S, \neg R) P(\neg S) P(\neg R)
\end{aligned}
$$

$$
P(W)=0.99(0.5)(0.5)+0.9(0.5)(0.5)+0.9(0.5)(0.5)+0.01(0.5)(0.5)=0.7
$$

4.2 Part B

$$
\begin{gathered}
P(R \mid W)=\frac{P(R, W)}{P(W)} \\
P(R \mid W)=\frac{P(W \mid R, \neg S) P(R) P(\neg S)+P(W \mid R, S) P(R) P(S)}{P(W)} \\
P(R \mid W)=\frac{0.9(0.5)(1.0-0.5)+0.99(0.5)(0.5)}{0.7} \\
P(R \mid W)=\frac{0.4725}{0.7}=0.675
\end{gathered}
$$

4.3 Part C

$$
\begin{gathered}
P(R \mid W, S)=\frac{P(R, W, S)}{P(W, S)} \\
P(R \mid W, S)=\frac{P(W \mid S, R) P(S) P(R)}{P(W \mid S, R) P(S) P(R)+P(W \mid S, \neg R) P(S) P(\neg R)}
\end{gathered}
$$

$$
P(R \mid W, S)=\frac{0.99(0.5)(0.5)}{0.99(0.5)(0.5)+0.90(0.5)(0.5)}
$$

$$
P(R \mid W, S)=\frac{0.99}{0.99+0.90}=0.524
$$

4.4 Part D

Now that we know the sprinker is on, we have a probable cause for the wet grass, thereby making the chance that it rained smaller. The sprinkler explains away the wet grass.

