
1

CSE 473

Chapters 10 & 11

Situation Calculus and Planning

CSE 473

Chapters 10 & 11

Situation Calculus and Planning

© CSE AI faculty 2

Overview

• FOL Planning in Situation Calculus
 Section 10.3 only in Chap. 10

• The Planning Problem (Chap. 11)
• STRIPS Formalism
• Examples
• Progression vs. Regression Planning

2

© CSE AI faculty 3

Situation Calculus

§ Situations: Logical description of world at
some point in time
§ Result(a,s) returns next “situation” (state)

§ Fluents: Functions and predicates that
change over time
§Holding(G1, S4) (where S4 is a situation)

§ Atemporal: Static functions and predicates
§Gold(G1)

© CSE AI faculty 4

Situation Calculus
§ Result([], s) = s
§ Result([a|seq], s) = Result(seq, Result(a, s))

3

© CSE AI faculty 5

Projection and Planning

§ Projection task: Deduce outcome of
sequence of actions

§ Planning task: Find sequence of actions that
achieves desired effect

§ Example: Initial Knowledge Base:
§At(Agent, [1,1], S0) ∧ At(G1, [1,2], S0)

∧ ¬Holding(G1, S0)

§Gold(G1) ∧ Adjacent([1,1], [1,2])
∧ Adjacent([1,2], [1,1])

© CSE AI faculty 6

Projection and Planning

§ Projection / prediction:
§At(G1, [1,1], Result([Go([1,1],[1,2]), Grab(G1),

Go([1,2],[1,1])], S0))

§ Planning Problem:
§ ∃∃∃∃ seq At(G1, [1,1], Result(seq, S0))

4

© CSE AI faculty 7

Actions in Situation Calculus
§ Possibility axioms:

§ At(Agent, x, s) ∧ Adjacent(x,y) ⇒ Poss(Go(x,y),s)

§ Gold(g) ∧ At(Agent,x,s) ∧ At(g, x, s) ⇒ Poss(Grab(g),s)

§ Effect axioms:
§ Poss(Go(x,y),s) ⇒ At(Agent, y, Result(Go(x,y),S))
§ Poss(Grab(g),s) ⇒ Holding(g, Result(Grab(g),S))
§ Poss(Release(g),s) ⇒ ¬ Holding(g, Result(Release(g),S))

§ Can prove now:
§ At(Agent, [1,2], Result(Go([1,1],[1,2]), S0))
§ Can’t show: At(G1, [1,2], Result(Go([1,1],[1,2]), S0))

© CSE AI faculty 8

Frame Problem
§ How to handle the things that are NOT

changed by an action?

§ A actions, E effects per action, F fluents

§ Representational frame problem: Size of
knowledge base should depend on number of
actions and effects, not fluents: O(AE)

5

© CSE AI faculty 9

Representational Frame Problem
§ Naïve solution O(AF):

§At(o,x,s) ∧ (o≠ Agent) ∧ ¬Holding(o,s) ⇒
At(o,x,Result(Go(y,z),s))

§ Successor-state axioms O(AE):
§Action possible ⇒

(fluent true in result state ó Action’s effect
made it true OR It was true before and
action didn’t change it)

§Poss(a,s) ⇒
(At(Agent,y,Result(a,s)) ó a = Go(x,y)

v (At(Agent,y,s) ∧ a ≠Go(y,z)))

© CSE AI faculty 10

GOLOG
§ Robot programming language based on

Situation Calculus

§ Cognitive robotics

§ Extensions can handle concurrent actions,
stochastic environments, and sensing

§ Was used in museum tour-guide robots

§ Still too inefficient due to generality

6

© CSE AI faculty 11

The Planning Problem
• Given

 a logical description of the initial situation,
 a logical description of the goal conditions, and
 a logical description of a set of possible actions,

• Find
 a sequence of actions for going from the initial

situation to a goal situation

• Practical applications
 design and manufacturing
 military operations
 games
 space exploration

© CSE AI faculty 12

General Planning Problem

Environment

Percepts Actions

What action

next?

Static

vs.

Dynamic

Fully Observable

vs.

Partially

Observable

Deterministic

vs.

Stochastic

Instantaneous

vs.

Durative

Full vs. Partial goal

satisfaction

Perfect

vs.

Noisy

7

© CSE AI faculty 13

Classical Planning (this lecture)

Environment

Static

Fully Observable

Deterministic Instantaneous

Full

Perfect

I = I = I = I = initial state G = G = G = G = goal state Ai(Prec) (Effects)

[I I I I] Ai Aj Ak Am
[G G G G]

© CSE AI faculty 14

How to Represent Actions?
• Simplifying assumptions

 Atomic time
 Agent is omniscient (no sensing necessary)
 Agent is sole cause of change
 Actions have deterministic effects

• STRIPS representation
 World = set of true propositions (conjunction of

literals)
 Closed Word Assumption (CWA): literals not

appearing are assumed false

 Actions:
• Precondition: (conjunction of positive literals, ground, no

functions)
• Effects (conjunction of literals, ground, no function)

 Goal = conjunction of literals
(STRIPS = Stanford Research Institute Problem Solver)

8

© CSE AI faculty 15

Example: Air cargo transport
Init(At(C1, SFO) ∧ At(C2,JFK) ∧ At(P1,SFO) ∧ At(P2,JFK) ∧ Cargo(C1)

∧ Cargo(C2) ∧ Plane(P1) ∧ Plane(P2) ∧ Airport(JFK) ∧ Airport(SFO))

Goal(At(C1,JFK) ∧ At(C2,SFO))

Action(Load(c,p,a)
PRECOND: At(c,a) ∧At(p,a) ∧Cargo(c) ∧Plane(p) ∧Airport(a)
EFFECT: ¬At(c,a) ∧In(c,p))

Action(Unload(c,p,a)
PRECOND: In(c,p) ∧At(p,a) ∧Cargo(c) ∧Plane(p) ∧Airport(a)
EFFECT: At(c,a) ∧ ¬In(c,p))

Action(Fly(p,from,to)
PRECOND: At(p,from) ∧Plane(p) ∧Airport(from) ∧Airport(to)
EFFECT: ¬ At(p,from) ∧ At(p,to))

Example Plan:
[Load(C1,P1,SFO), Fly(P1,SFO,JFK), Load(C2,P2,JFK),

Fly(P2,JFK,SFO)]

© CSE AI faculty 16

Example: Spare tire problem
Init(At(Flat, Axle) ∧ At(Spare,Trunk))

Goal(At(Spare,Axle))

Action(Remove(Spare,Trunk)
PRECOND: At(Spare,Trunk)
EFFECT: ¬At(Spare,Trunk) ∧ At(Spare,Ground))

Action(Remove(Flat,Axle)
PRECOND: At(Flat,Axle)
EFFECT: ¬At(Flat,Axle) ∧ At(Flat,Ground))

Action(PutOn(Spare,Axle)
PRECOND: At(Spare,Groundp) ∧¬At(Flat,Axle)
EFFECT: At(Spare,Axle) ∧ ¬At(Spare,Ground))

Action(LeaveOvernight
PRECOND:
EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬
At(Spare,trunk) ∧ ¬ At(Flat,Ground) ∧ ¬ At(Flat,Axle))

9

© CSE AI faculty 17

Example: Blocks world

Init(On(A, Table) ∧ On(B,Table) ∧ On(C,A) ∧ Block(A) ∧ Block(B)
∧ Block(C) ∧ Clear(B) ∧ Clear(C))

Goal(On(A,B) ∧ On(B,C))

Action(Move(b,x,y)
PRECOND: On(b,x) ∧ Clear(b) ∧ Clear(y) ∧ Block(b) ∧ (b≠ x) ∧
(b≠ y) ∧ (x≠ y)
EFFECT: On(b,y) ∧ Clear(x) ∧ ¬ On(b,x) ∧ ¬ Clear(y))

Action(MoveToTable(b,x)
PRECOND: On(b,x) ∧ Clear(b) ∧ Block(b) ∧ (b≠ x)
EFFECT: On(b,Table) ∧ Clear(x) ∧ ¬ On(b,x))

© CSE AI faculty 18

Planning with state-space search

• Both forward and backward search possible
• Progression planners

 Forward state-space search
 Consider the effect of all possible actions in a given

state
• Regression planners

 Backward state-space search
 To achieve a goal, what must have been true in the

previous state?

10

© CSE AI faculty 19

Progression vs. Regression Planning

© CSE AI faculty 20

Progression Planning
• Formulation as state-space search problem:

 Initial state = initial state of the planning problem
• Literals not appearing are false (CWA)

 Actions = those whose preconditions are satisfied
• Add positive effects, delete negative

 Goal test = does the state satisfy the goal
 Step cost = each action costs 1

• No functions … any graph search that is complete is a
complete planning algorithm.
 E.g. A*

• Inefficient:
 (1) irrelevant action problem
 (2) good heuristic required for efficient search

11

© CSE AI faculty 21

Next Time

• Regression Planning
• Partial-order Planning
• GraphPlan

